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22.1 Interactive proof for graph non-isomorphism

In this lecture we will show that the language GNI is in class IP. Two graphs G1 and G2 are isomorphic if there is a
permutation π of the labels of the nodes of G1 such that π(G1) = G2, where π(G1) is the labeled graph obtained by
applying π on its vertex labels.

Definition 22.1. GNI = {< G1, G2 >: G1 6∼= G2 i.e. G1 and G2 are nonisomorphic}

Definition 22.2. GI = {< G1, G2 >: G1
∼= G2 i.e. G1 and G2 are isomorphic}

Claim: GI ∈ NP

Proof. The certificate is the description of permutation π. One can apply the permutation π on the vertices of G1 and
check whether π(G1) = G2 in polynomial time.

Interactive protocol for GNI
Input: Adjacency matrices of G1 and G2. (w.l.o.g. let n be the no. of vertices in G1&G2)
V: Verifier picks i ∈R {1, 2} and a random π ∈ Sn, where set Sn contains all permutations of first n

natural numbers. Computes H = π(Gi), sends H to prover.
P: Prover sends j ∈ {1, 2} to V after seeing H.
V: If i = j then accept else reject.

observation: If (G1, G2) ∈ GNI then ∃P s.t.
Pr [OutV < V,P > (G1, G2) = 1] = 1

If (G1, G2) 6∈ GNI then ∀P
Pr [OutV < V,P > (G1, G2) = 1] ≤ 1

2

Remark

• It appears the fact that verifier is keeping it’s random coins secret is crucial.

• Class IP was defined in a work by Goldwasser, Micali, Rackoff in 1985.

• Laszlo Babai defined the classes AM(& MA) using public coins.

Definition 22.3. Class AM[k] (Arthur-Merlin) : For any k ∈ N, AM[k] is a subclass of IP[k], where the verifier only
sends random strings to the prover and it is not allowed to use any other random bits that has not been revealed to the
prover. Class AM[2] is also denoted by AM.
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Definition 22.4. Class MA (Merlin-Arthur) : It is the class of languages with a two round public-coin interactive
proof with the prover sending first message.

Lemma : For every k>0, AM [k] = AM

Recall: BP.NP = {L : L ≤R 3− SAT}
Lemma : AM = BP.NP

Proof. ⇒ AM ⊆ BP.NP : Suppose L ∈ AM, we need to show that L ∈ BP.NP. Let x ∈ L, for fixed input x V picks
a random string r and send r to P. Upon receiving r prover sends a = g(x, r) to verifier. Now V runs polytime
algorithm say f(x, r, a). If x ∈L then

∃P s.t. Prr [OutV < V,P > (x, a, r) = 1] ≥ 2

3

If x 6∈ L then

∀P Prr [OutV < V,P > (x, a, r) = 1] ≤ 1

3

Note that for any strings x, r the execution between verifier and prover can be interpreted as non-deterministic com-
putation such that V on input (x, r) has access to some witness a (provided by P), which is checked by the poly-
time V. That is the language L′ = {(x, r) : ∃ a s.t. V (x, r, a) = 1} is in NP, and therefore there exist a formula
φx,r such that (x, r) ∈ L′ ⇔ φx,r ∈ 3 − SAT . Observe that OutV < V,P > (x, a, r) = 1 if & only if
(x, r) ∈ L′ ⇐⇒ φx,r ∈ 3− SAT . Hence

x ∈ L⇒ Prr [φx,r ∈ 3− SAT ] ≥ 2

3

x 6∈ L⇒ Prr [φx,r ∈ 3− SAT ] ≤ 1

3

Hence, L ∈ BP.NP
⇐ BP.NP ⊆ AM : Suppose L∈ BP.NP, we need to show that L ∈ AM. Since L ∈ BP.NP there is a polytime algorithm
f for constructing a formula φx,r = f(x, r) such that for every string x

x ∈ L⇒ Prr [φx,r ∈ 3− SAT ] ≥ 2

3

x 6∈ L⇒ Prr [φx,r ∈ 3− SAT ] ≤ 1

3

The 2-round protocol for deciding L is as follows: The verifier sends to the prover a random string r, and the prover
replies with a satisfying assignment for φx,r. At the end, the verifier checks that indeed the assignment is satisfying
for φx,r.

Theorem 22.5. (Goldwasser-Sipser) For every k : N→ N, with k(n) computable in polytime, IP[k]⊆ AM[k+2]

We’ll now show an AM protocol for GNI.

Claim : Define the following set for two graphs G1 and G2. S = {(H,π) : H ∼= G1orH ∼= G2 and π ∈ auto(H) }
where π is an automorphism of H.

Case 1: If G1
∼= G2 then |S| = n!

Case 2: If G1 6∼= G2 then |S| = 2n!

Proof. For an n-vertex graph consider the multiset all(G) = {π1(G), ..., πn!(G)} of all permuted version of G. This
is indeed a multi-set since it is possible that πi(G) = πj(G) even when πi 6= πj . Let auto(G) = {π|π(G) = G} be
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the automorphisms of G. Let iso(G) be the set {π(G)|π is a permutation}. We claim that for any n-vertex graph
G we have:

|auto(G)| . |iso(G)| = n!

The reason is that our original set all(G) has exactly n! elements in it, but each graph in iso(G) appears exactly
auto(G) times in all(G) (because |auto(G)| = |auto(π(G))| for any permutation π) Note that if G1

∼= G2 then H
isomorphic to G1 ⇔ it is isomorphic to G2; also the number of automorphisms of any such H is exactly |auto(G1)|.
So the size of S is exactly |auto(G1)| . |iso(G1)| = n!. On the other hand, if G1 6∼= G2 then the graphs isomorphic to
G1 are distinct from those graphs isomorphic to G2. So the size of S in this case is

|auto(G1)| . |iso(G1)|+ |auto(G2)| . |iso(G2)| = 2n!

Definition 22.6. Pairwise independent hash functions: Let Hm,q be a collection of functions from {0, 1}m to {0, 1}q .
Hm,q is pairwise independent if ∀x, x′ ∈ {0, 1}m with x 6= x′ and ∀y, y′ ∈ {0, 1}q ,
Pr

h∈RHm,q
{h(x) = y and h(x′) = y′} = 1

22q .

Protocol: Goldwasser-Sipser Set Lower Bound Protocol

Notations: Let S ⊆ {0, 1}m be a set such that membership in S can be certified efficiently. The prover’s goal is to
convince the verifier that |S| ≥ K and if |S| ≤ K

2 then verifier will reject with high probability, where K = 2n! and
q be such that 2q−2 < K ≤ 2q−1

V: Verifier picks a random h ∈ Hm,q = H(say), picks y ∈R {0, 1}q and sends h , y to prover P.
P: Prover returns an x ∈ {0, 1}m and a z (an honest prover returns an x in S s.t. h(x) = y if such an x exists and z
certifies that x ∈ S).
V: If h(x) = y and z certifies that x ∈ S then accept; otherwise reject.

Theorem 22.7. GNI ∈ AM

Proof. We need to show that there exists a 2-round protocol s.t.
if < G1, G2 >∈ GNI i.e. G1 6∼= G2 then probability of acceptance is high.
if < G1, G2 > 6∈ GNI i.e. G1

∼= G2 then probability of acceptance is low.
The protocol is defined above. By using the above claim we compute the acceptance probability in two cases:

Case 1: If |S| = n! = K
2

Pr
h∈RH

y∈R{0,1}q

{∃x ∈ S, s.t. h(x) = y} ≤ n!

2q
=

K

2q+1
(22.1)

Case 2: If |S| = 2n! = K
Pr
h∈RH

y∈R{0,1}q

{∃x ∈ S, s.t. h(x) = y} ≥? (22.2)

Now we fix y arbitrarily and compute the probability Pr
h∈RH

{∃x ∈ S, s.t. h(x) = y}
Let Ex be the event that h(x) = y, according to inclusion exclusion principle

Pr

{∨
x

Ex

}
≥
∑
x

Pr {Ex} −
1

2

∑
x 6=x′

Pr {Ex ∩ Ex′} (22.3)
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Pr {Ex} =
1

2q
(22.4)

Pr {Ex ∩ Ex′} = 1

22q
(as h is picked from Hm,q) (22.5)

Pr
h∈RH

{∃x ∈ S, s.t. h(x) = y} ≥
∑
x∈S

1

2q
− 1

2

∑
x 6=x′

1

22q
(22.6)

Now put the value of equation 22.6 in equation 22.2

Pr
h∈RH

{∃x ∈ S, s.t. h(x) = y} ≥
∑
x∈S

1

2q
− 1

2

∑
x 6=x′

1

22q

≥ |S|
2q
− |S|

2

2.22q

=
K

2q
− K2

2.22q

=
K

2q
(1− K

2q+1
)

≥ K

2q
(1− 2q−1

2q+1
)

=
3

4

K

2q

Lemma: Let p = |S|
2q then

3

4
p ≤ Pr

h∈RH
y∈R{0,1}q

{∃x, h(x) = y} ≤ p

Note: If we repeat the lower bound protocol independently M times, where M is in poly(|x|), we can tightly bound
the probability of acceptance by using Chernoff bound.

Case 1: If |S| = K
2 i.e. G1

∼= G2 and verifier accepts then this is bad event

Pr [’Bad Event’] = Pr [’V accepts’] ≤ K

2.2q

Case 2: If |S| = K i.e. G1 6∼= G2 and verifier accepts then this is good event

Pr [’Good Event’] = Pr [’V accepts’] ≥ 3

4

K

2q

Remark: For single iteration
if case 1 then Pr [’V accepts’] ≤ K

2.2q

if case 2 then Pr [’V accepts’] ≥ 3
4
K
2q

Let Xi be the indicator random variable defined as below,

Xi =

{
1 if V accepts in ith iteration
0 if V rejects in ith iteration
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Let X =
∑M
i=1Xi,

Pr [Xi = 1] = Pr [V accepts]

E [X] = E

[
M∑
i=1

Xi

]

=

M∑
i=1

E [Xi] (linearity of expectation as X ′is are iids)

=

M∑
i=1

P (Xi = 1)

For case 1 E [X] ≤ 1
2
K
2qM

For case 2 E [X] ≥ 3
4
K
2qM

If the expected value is close to 1
2
K
2qM then outputG1

∼= G2, if expected value is close to 3
4
K
2qM then outputG1 6∼= G2.

We know that for case 1 expected value is less than equal to 1
2
K
2qM and the error probability is Pr [X > (1 + δ)E [X]].

In case 2 expected value is greater than equal to 3
4
K
2qM and the error probability isPr [X < (1− δ)E [X]]. We’ll apply

Chernoff bound to restrict these error probabilities as follows
For case 1

Pr [X > (1 + δ)E [X]] ≤ e−
E[X]δ2

3

For case 2
Pr [X < (1− δ)E [X]] ≤ e−

E[X]δ2

2

We need to upper bound the error probability in both the cases.

Case 1: In this case Pr [Error] = Pr
[
X > (1 + δ) 12

K
2qM

]
and E [X] ≤ 1

2
K
2qM

we can not directly apply the Chernoff bound because if E [X] = 0 then Pr [Error] ≤ 1 which is obvious and is of
no use. Hence we’ll apply the Markov’s inequality. By Markov’s inequality

Pr [Error] = Pr

[
X > (1 + δ)

1

2

K

2q
M

]
≤ E [X]

(1 + δ) 12
K
2qM

If E [X] ≤ 1
3
1
2
K
2qM then Pr[Error] ≤ 1

3

Else i.e. (E [X] ≥ 1
3
1
2
K
2qM ) we need to apply the chernoff bound
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E [X] ≤ 1

2

K

2q
M

⇒ (1 + δ)E [X] ≤ (1 + δ)
1

2

K

2q
M

⇒ if X > (1 + δ)
1

2

K

2q
M then X > (1 + δ)E [X]

⇒ Pr

[
X > (1 + δ)

1

2

K

2q
M

]
≤ Pr [X < (1 + δ)E [X]]

≤ e−
E[X]δ2

3 (using chernoff bound)

=
1

e
E[X]δ2

3

≤ 1

e
1
2
K
2qM

δ2

9

as E [X] ≥ 1

3

1

2

K

2q
M

Remark: By increasing the number of rounds i.e. M we can decrease the error probability. Error probability for this
case say EP1=Pr [Error] ≤ min( 13 ,

1
eC1.M

) ≤ 1
3 , where C1 = 1

2
K
2q
δ2

9 is constant.

Case 2: In this case Pr [Error] = Pr
[
X < (1− δ) 34

K
2qM

]
E [X] ≥ 3

4

K

2q
M

⇒ (1− δ)E [X] ≥ (1− δ)3
4

K

2q
M

⇒ if X < (1− δ)3
4

K

2q
M then X < (1− δ)E [X]

⇒ Pr

[
X < (1− δ)3

4

K

2q
M

]
≤ Pr [X < (1− δ)E [X]]

≤ e−
E[X]δ2

2 (using chernoff bound)

=
1

e
E[X]δ2

2

≤ 1

e
3
4
K
2qM

δ2

2

Remark: Error probability for this case say EP2 = Pr [Error] ≤ 1
eC2.M

, where C2 = 3
4
K
2q
δ2

2 is constant. Hence the
overall error probability Pr [Error] = max(EP1, EP2) ≤ 1

3

Choose a δ such that
(1 + δ)

K

2q+1
M < (1− δ)3

2

K

2q+1
M

(1 + δ) < (1− δ)3
2

(1 + δ)

(1− δ)
<

3

2

For example, δ = 1
10 suffices.

Lemma: If GI is NP-Complete then PH collapses.
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Proof. Let us assume GI ∈ NP-Complete

⇒ GNI ∈ Co−NPC
⇒ 3− SAT ≤P GNI
⇒ 3− SAT ∈ BP.NP (as GNI ∈ AM = BP.NP )

⇒ 3− SAT ≤R 3− SAT
⇒ Co−NP ⊆ BP.NP ⊆ NP/poly

Note: Assignment Problem If Co-NP ⊆ NP/poly then PH collapses to
∑P

3 . (This is also known as Yap’s theorem).
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