
E0 224: Computational Complexity Theory Dept of CSA
Fall 2014 Indian Institute of Science

Lecture 23: Nov 3,2014
Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in > Scribes: Mohd Aqil,Datta Krupa R

In this lecture we define the language (#SATD) and prove that (#SATD) ∈ IP .This will help us in the next
lecture to prove that IP = PSPACE [SHAM90, LFKN90] an amazing result that showed that when both
randomization and interaction are allowed, the proofs that can be verified in polynomial time are exactly
those proofs that can be generated with polynomial space.

Before Shamir proved this in 1990 (building upon the work of [LFKN90]) many researchers believed that IP
was strict subset of PSPACE .This intuition was based on the following facts.It was known that interaction
alone does not give us any language outside NP(dIP = NP) and randomization alone does not add significant
power to computation(Researchers suspect BPP = P).So researchers believed that combining interaction
and randomness could not give us a much powerful model.

Theorem 23.1 IP = PSPACE [SHAM90, LFKN90]

Definition 23.2 (IP[k) (recall)] Language L ∈ IP [k] if there is a probabilistic poly time TM V (called the
verifier) which interacts with a prover function P for k rounds, such that following holds,
(completeness)

x ∈ L⇔ ∃P s.t Prrandomness of V{OutV (〈V, P 〉) = 1} ≥ 2

3

(soundness)

x /∈ L⇔ ∀P s.t Prrandomness of V{OutV (〈V, P 〉) = 1} ≤ 1

3

Definition 23.3 (class IP) (recall)
IP = ∪c>0IP [nc]

We will prove theorem(23.1) in the next lecture.Here we will prove IP ⊆ PSPACE and a weaker result
Co-NP ⊆ IP.

23.1 IP ⊆ PSPACE

[ref3] Proof: Suppose L ∈ IP.Then L ∈ IP[nc] for some constant c.Assume K = nc. Then we have some
verifier V for L.For a fixed input x and fixed K, we observe that there are finitely many prover functions
P .We choose the optimum prover P that maximizes the verifier’s acceptance probability given input x.We
denote this maximum probability by ρopt

ρopt = maxPPr{outV < V,P > (x) = 1} (23.1)

if ρopt ≥ 2
3 then we have x ∈ L. If ρopt ≤ 1

3 then we have x /∈ L.

To prove that IP ⊆ PSPACE we will show that optimum prover runs in PSPACE. The crux of the proof
lies in enumerating each possible communicating pattern between the verifier and prover for a fixed input x

23-1

23-2 Lecture 23: Nov 3,2014

.Suppose V runs in p(n) time where p(n) is some polynomial in n and n =| x |.The prover knows the verfier
protocol but does not know the random bits selected by the verifier.However the length of random string
can be atmost p(n) since verifier runs in time p(n) time.To generate the optimum response the prover uses
recursion to simulate the verifier.We also note that the length of the response by the prover is also bounded
by p(n) and the total number of interactive rounds is K , both of which are polynomials in n.To generate
the optimum response at each round i, the prover simulates the action of verifier for each possible response
over all possible random strings.Prover can easily simulate such a verifier by using recursion.We notice here
that the depth of recusrion is atmost K which is polynomial in n and also each recusrive procedure uses
polynomial amount of bits.Thus the entire procedure uses atmost polynomial space.By seeing the verifiers
output for each possible response over all random strings, the prover chooses the response which causes the
verifier to accept the maximum number of times.

23.2 Co-NP ⊆ IP

To prove that Co-NP ⊆ IP , we can show that SAT ∈ IP since it is Co-NP Complete. We will prove a
slightly more general result (#SATD) ∈ IP.

Definition 23.4 (#SATD) = {< φ,K >: φ is a 3CNF formula and it has exactly K satisfying assignments}
We note that (#SATD) contains SAT as a special case when K = 0.

Definition 23.5 Arithmetization:Given a boolean formula φ(−→x) define a polynomial Pφ(−→x) such that
∀−→x ∈ {0, 1}n, φ(−→x) = P(−→x). Note that 0,1 can be thought of both as truth values and as elements of some
finite field F.For convenience of notation we use the same symbols to denote boolean variables as well as
variables over field F.

We make the following observations:

• x ∧ y is satisfiable iff x.y = 1 in the field F for x,y ∈ {0, 1}.

• ¬x is satisfiable iff 1-x = 1 in the field F for x ∈ {0, 1}.

• x ∨ y is satisfiable iff 1-(1-x)(1-y) = 1 in the field F for x,y ∈ {0, 1}. We have x ∨ y = ¬(¬x ∧ ¬y) and
the result follows.

Now given any 3-CNF formula φ(x1, x2, . . . , xn) with m clauses and n variables we can convert it into an
equivalent polynomial.For any clause of size 3 we write an equivalent degree 3 polynomial as given in the
following example.

xi ∨ xj ∨ xk ←→ 1− (1− xi)(xj)(1− xk)

We denote the polynomial for the j th clause by pj(x1, x2, . . . , xn), for the sake of notation, even though
pj depends on atmost 3 variables.Multiplying the polynomials for each clause we obtain the multivariate
polynomial Pφ(x1, x2, . . . , xn) = Πj≤mpj(x1, x2, . . . , xn) that evaluates to 1 on satisfying assignments of
φ(x1, x2, . . . , xn) and 0 otherwise. The degree of Pφ(x1, x2, . . . , xn) is at most 3m since each pj(x1, x2, . . . , xn)
is of degree at most 3. Also the size of Pφ(x1, x2, . . . , xn) is O(m) since Pφ is represented as a product of
degree 3 polynomials without opening the parenthesis.

Lecture 23: Nov 3,2014 23-3

We observe here that once we have the corresponding polynomial for the boolean formula, we can evaluate
Pφ(x1, x2, . . . , xn) at arbitrary values from the finite field F instead of just {0, 1}.

Theorem 23.6 (#SATD) ∈ IP

Proof: Given input < φ,K > where φ is a 3-CNF formula of n variables and m clauses, we use arithme-
tization to construct polynomial Pφ.Let #φ denoting the number of satisfying assignments of φ. Then we
have

#φ =
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

bn∈{0,1}

Pφ(b1, . . . , bn) (23.2)

If the string < φ,K > is in (#SATD), then this sum #φ is exactly K.We also note that the value of #φ can
be in the range [0, 2n].Now we describe the sumcheck protocol that allows us to verify that #φ is indeed K
as claimed by the prover.

Sumcheck Protocol First the prover sends a prime p to the verifier in the interval (2n, 22n].Verifier checks
if p is a prime by any of the probabilistic or deterministic tests. All the computations will be performed
modulo p in the sumcheck protocol i.e in the field F = Fp of integers.

Let g(X1, X2, . . . , Xn) be an arbitrary degree d polynomial, then the claim of the prover is for g = Pφ (where
the degree d of the polynomial is at most 3m) .

K =
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

bn∈{0,1}

g(X1, . . . , Xn) (23.3)

where all the computations are in the field Fp.We note the following:

• The polynomial g(X1, X2, . . . , Xn) should have a poly(n) representation so that the verifier can effi-
ciently evaluate g(X1, X2, . . . , Xn) for any X1 = b1, X2 = b2, . . . , Xn = bn. This is true for g = Pφ

• If we fix X2 = b2, . . . , Xn = bn then g(X1, b2, . . . , bn) is polynomial in one variable X1 of degree d.

• The following is also a degree d polynomial

h(X1) =
∑

b2∈{0,1}

. . .
∑

bn∈{0,1}

g(X1, b2 . . . , bn) (23.4)

• If the equation (23.3) is true then h(0) + h(1) = K.

The sumcheck protocol consists of the following steps by the verifier and the prover:

• Verifier: If n = 1 , verify that g(1) + g(0) = K.If it is true then accept otherwise reject.If n ≥ 2 then
ask prover to send h(X1) as described above.

• Prover: Send some polynomial s(X1) (if the prover is honest then we have s(X1) = h(X1)) .

• Verifier: if s(0)+s(1) 6= K reject else pick a random number a in Fp and fixX1 = a.Let g(a,X2, . . . , Xn)
be the polynomial in n− 1 variables.Then recursively use the same protocol to verify

s(a) =
∑

b2∈{0,1}

. . .
∑

bn∈{0,1}

g(a, b2 . . . , bn) (23.5)

23-4 Lecture 23: Nov 3,2014

Completeness: If the equation (23.3) is true then the verifier will accept with probability 1.

If the claim(23.3) is true then in each round i the prover sends s(Xi) = h(Xi).Hence s(0) + s(1) = K for
each round and verifier will accept with probability 1 after n rounds.

Soundness: If the claim is false then the verifier will reject with probability at least (1− d
p)n.

We prove the above result by induction on n.Assume the induction hypothesis for degree d polynomials in
n−1 variables i.e verifier rejects the false claim with probability at least (1− d

p)n−1.In the base case if n = 1

then verifier evaluates g(0) + g(1) and rejects with probability 1 if it is not equal to K.

Suppose k 6=
∑
· · ·
∑
Pϕ(X) then a dishonest prover has to send s(x1) 6= h(x1), otherwise it will get caught

i.e.if the prover returns h(X1) for a false claim then verifier rejects immediately with probability 1.Suppose
the dishonest prover sends a polynomial s(X1) different from h(X1) such that s(0) + s(1) = K. We then
observe that h(X1)− s(X1) is a non zero degree d polynomial and thus has at-most d roots .Hence there are
at most d values a at which s(a) = h(a).If a is picked randomly in the field Fp then

Pra[s(a) 6= h(a)] ≥ 1− d

p
(23.6)

If s(a) 6= h(a) then the prover has to prove a false claim in the recursive step for a n− 1 variable polynomial
, by induction hypothesis the prover fails to prove this claim with probability at least ≥ (1− d

p)n−1.Hence

Pr[V rejects] ≥
(
1− d

p

)
.
(
1− d

p

)n−1
=
(
1− d

p

)n
(23.7)

Lemma 23.7 Co-NP ⊆ IP

Proof: We note that (#SATD) contains SAT as a special case when K = 0. Hence SAT ∈ IP. Since SAT
is Co-NP complete therefore Co-NP ⊆ IP.

References

[SHAM90] A. Shamir. IP = PSPACE. J. ACM 39(4): 869877 (1992). Preliminary version in FOCS 90.

[AROBAR09] S. ARORA and B. BARAK Computational Complexity: A Mordern Approach, Cambridge
University Press, 2009

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, Noam Nisan: Algebraic Methods for Inter-
active Proof Systems FOCS 1990

[ref3] http://cs.brown.edu/courses/gs019/papers/ip.pdf

