E0 224 Computational Complexity Theory Indian Institute of Science, Bangalore

Fall 2014 Department of Computer Science and Automation
Lecture 24: Nov 5, 2014

Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in> Scribe: Sachin Kumar Srivastava

24.1 1P =PSPACE

In the last class, we showed that #SAT € IP. The crucial step, there, was Arithmetization. We converted an instance
of a 3 CNF formula to a polynomial.

¢ — P, such that (b1, ba, ..., b,) = P,(b1, b2, ..., by,), where b; € {0,1}.

We have already argued, in the last class, that [P C PSPACE. Now, we have to show that PSPACE C IP. So, we only
need to show that TQBF € IP as TQBF is PSPACE-complete.

TQBF = { All true quantified boolean formulae }.

QBF : QBF has the form Q121 Q222Q325....QnTne(1, T2, T3, ..., Tn), Where each Q; is either 3 or V and z;s are
boolean variables.

Input : y = Q171Q222Q3%3...QnTnp(21, T2, T3, ..., Tpy).

First Observation : We can assume, without loss of generality, that ¢(x1, x2,x3, ...,) is a 3 CNF formula (be-
cause we can convert any SAT instance to an equivalent 3 CNF SAT instance in polynomial time). Let P, be the
arithmetization of (.

Second Observation : y is in TQBF if and only if Rix1 Roa....Rp2yn Py(21, 2, ..., Zn) # 0,
where R; = Zzie{(),l} if @; = Jand

Ri =1l;,c01y if Qi = V.
For example : dzp(x) € TQBF <~ 216{0,1} P,y # 0and Vzp(z) € TQBF <= Il,c(0,1}Ppz) # 0
(where degree of P, < 3m and underlying field is IF,, where p is sufficiently large i.e. p € [22"2, 23”2]).
Jz1Veop(z1,22) € TQBF <— Zmle{o,l} Iy, cq0,13 Pp(w1, 22) # 0.
We will prove by induction that :

Q111Q215....Qn T p(x1, T2, T3, ..., xp) € TQBF if and only if

(Zzle{o,l} orﬂﬁe{o)l}) (sze{o)l} OTvaze{OJ})““(Za:"e{o,l} oer,,Le{o’l})Pg,(xl, T2,y .oy Tn) = k, where k
is some non-zero positive integer and (); is either 3 or V and operator for quantification in polynomial for x; depends

upon Q;, i.e. if); is 3, then operator will be Zx,;eo,l and if @); is V, then operator will be I1;, ¢ 0,1}

We can see that it is true for the base case when n = 1 i.e. if formula is of the form Jp(x1), then it belongs to TQBF iff
for either z; = 0, (z1) is true or for 2, = 1, (1) is true, hence when it is converted 0 3 0, ¢ ¢ 13 P (1), Pp(21)
will have a non-zero value iff either at z; = 0, P,(z1) > Oorat z; = 1, P,(x1) > 0 or at both P,(z1) > 0, in any
case we will sum both values and hence it is true iff any of these values is greater than zero. On the other hand, if
formula is of the form Vi (1), then it belongs to TQBF iff for both z; = 0, ¢(x1) is true and for x; = 1, p(x1) is true,
hence when it is converted to I, 0,13 Py (21), Py(21) will have a non-zero value iff at both 1 = 0, P,(z1) > 0

24-1

Lecture 24: Nov 5, 2014 24-2

and 1 = 1, P,(x1) > 0, in this case we will multiply both values and hence it is true iff all the values are greater than

Z€ro.

We suppose it for n = m. We suppose Q121Q222....QmTmp(x1, T2, X3,, Ty,) € TQBF if and only if
D1 s L, Py (%) # 0, where), represents), and II; represents IL,,

Now, we have to show that it holds forn = m + 1.
Q121Q2%2....QunTm Qm1Tm+19(X1, T2, X3,y ooy Ty Tinyp1) € TQBEF then, it can be written in polynomial form.

Without loss of generality, we can assume that ¢J; = 3.
= [Q272... QT Q1T 19(0, T2, T3, ...y Ty, Tg1)| € TQBF OR
[Q222... QT Qi 1Tm410(1, 2,23, ooy T, Trmy1) | € TQBF
— [Hg Yog oAl 1 Pp(0, 2, 23, ooy Ty Tige1) # O] OR
[Hg Yog oAl Po(1, 22,3, ooy Tiny Tng1) # O]
— [HQ Yog oAl 1 Pp(0, 22, 23,,xm,xm+1)]+
[HQ Dog e ALy Po(1, 22, 23, oy T, xm+1)] 2 0 (.. as each of the expression is a non-negative value).
Yol > I Po(21, 22,3, ooy Ty 1) 7 0.
Similarly, when ; = II then
Q121Q2%2...QumTm Qm+1Tm+19(T1, T2, T3, evey Ty Timy1) € TQBF then, it can be written in polynomial form.
= [Q272....QuTm Qi 1Tm419(0, T2, T3, ..., Ty, Tig1)| € TQBF AND
[an:g....meQOmeng(l,xg,arg,,xm,xm_s_l)] € TQBF
— [Hg Yog oAl 1 Pp(0, 2, @3, ooy Ty Tige1) # O] AND
Mo > . ILn Py(1, @2, @3, oy Ty Ting1) 7 0]
= (2>, g1 Pp(0, 22, 23, ooy Ty, Trng1) 5

[Hg Dog ALy Po(1, 2, 23,,xm,xm+1)] # 0 (.. as each of the expression must be a non-negative value and

Nnon-zero).

LTI Y s 0 Py (21, 22, 3, ooy Tiny Tnge1) 7 0.

Thus, we have shown the inductive step to be true.

Hence, we can see that Q121 Q2%3....Qnxn (21, T2, T3, ..., Ty) € TQBF if and only if

(lee{O,l} oerle{OJ}) (2126{0,1} OTHCEZE{OJ})....(ane{o,l} OTHwne{OJ})PSa(LEl, X9,y Ty) = k, where k

is some non-zero positive integer.

Recall #S AT € IP argument (LF K N'90) using Sum-Check protocol : 2116{071} ane{o,l} Py(x1, 22,23, ..., Tn) =
k.

Without loss of generality let the input instance be 3x1VaoIxs.... Ve, (21, T2, X3,, T,), Where ¢ is a 3-CNF with
m clauses. Let us attempt to apply the Sum-Check protocol.

Doy Wy Dy oIl Pp(@1, 2, 3, oy 2n) = k e L

Prover is trying to convince the verifier that the above equality holds. Verifier should reject with high probability if the
above equality does not hold.

Lecture 24: Nov 5, 2014 24-3

In the beginning, both the verifier and the prover find out the arithmetic expression P, from ¢ (degree of P, < 3m).
Then, the prover sends a k, and a large prime p to the verifier. Then, the rest of the computation happens over IF,,.

Let h(x1) = I, ng ALy, Po(x, T2, .00,).
We cannot, straightaway, repeat the previous Sum-Check protocol because of the following issue :

Issue : deg., (h(x1)) can be exponentially large (may not be a polynomial) because of the products. Hence, it is not
immediately clear if the prover can send h to the verifier.

(Shamir'90) carried on from here and sometime later from (LF K N'90) got the IP = PSPACE result by fixing this
issue.

Definition : (Linearizing Operator) (z; € {0,1}) As we see that the degree of the polynomial can be exponential
(because of the V quantifier), hence we try to come up with a technique that controls the degree of this polynomial.
We are just dealing with ;; € {0, 1}, hence we know no matter what the degree of z; be in the polynomial, it can be
replaced by just z; because x¥ = x; for z; € {0, 1}. Hence, we define the linearizing operator as follows :

P =

inP(JUl, L2y uey Qin) = inp(ml, L2y ooy Tj—1, 1, Lid1seees J,‘n) + (1 - xi)P(le, L2y ooy Tj—1, O, Lid1seees J)n). Lml can
be written as L; for short. We adjust/modify the previous Sum-Check expression to the following expression(using
linearizing operators to control the degree) :

>oe, Loy ey Loy Ly sz Ly Loy Lyy... Mg, Ly Loy Lo, ...Ly, Po(21, 22,3, ...22,) = k. e 2.

The verifier knows this LHS expression and asks the prover for its value. The prover returns some value, say k, and if
the value is non-zero he asks the prover to send a polynomial h’(z1) that is univariate in 1 :

P'(z1) == Ly Moy Loy Ly 3y, Ly Ly Lo o Ly Ly Ly oo L, Pp (%1, 02, @3, ...2) is B (1) (We will see later).
Now, the prover and the verifier have to check this formula instead of the earlier one.

Observation : (1) is true iff (2) is true for {0, 1} values of z;.

e.g. Verifier asks the prover tosend 1/ (21) = Ly, oy Lay Ly D, Ly Ly Ly oo W Ly Ly Lo Ly, P (1, T2, @3, ..

(degy, (W' (x1)) < 1).

Now, the prover sends some s(z1) (an honest prover sends s(x1) = h'(z1)). Verifier checks if s(0) + s(1) = k, if not
he rejects. Otherwise, he picks a random a € IF), and asks the prover to prove :

(Lo Mgy Ly, Ly, Ywy Lo Loy Lo Xy, Ly Ly Ly oo Ly, Py (1, 22, 233,)] = s(a).

Tr1=a
Verifier asks for the polynomial b’ (z1)(deg(h” (x1)) < 2), where
W'(zq1) =My, Ly, Ly, ng Ly LyyLyy... Mg, Ly Ly, Ly, .. Ly, Py(T).
Prover returns some s’(x1). Once again, an honest prover sends s’(z1) = h'”(z1).

Verifier checks if [LIIS’(xl)]m:a = s(a). Suppose s'(x1) = h”(x1). Then, L,, s'(x1) = h'(x1), and verifier would
be checking if [L,, s'(21)], _, = h'(a) = s(a) for arandom a € F,,. However, h'(a) # s(a) with high probability
unless h'(xz1) = s(xz1). Hence, if s’(z1) = h”(x1), then a dishonest prover can try to not get caught by sending
h'(z1) = s(x1), butin this scenario it would have already gotten caught at the prior check s(0) + s(1) = k. Therefore,
a dishonest prover’s only chance is to send a s’(z1) different from 2" (x1).

Verifier picks a random a’ € . Then, he asks the prover to prove:

[MeyLo, Ly 3y, Ly Ly Lag oMo, Loy Loy Ly oLy, Po(2)], _, = 8'(d).

r1=a

iie. Wy, [Lay Loy 3, Ly Loy Loy o1, Loy, Ly Ly oo L, Py (7))

r1=a’

xn)

Lecture 24: Nov 5, 2014 24-4

Verifier asks for the polynomial : [Ly, Ly, Y | Lay Lay Lug oo T, Ly Ly L oo- Lo, Po(8)] -

T3

g(z2)

It is denoted as g(x2); deg., g(x2) < 1.
Prover sends some 7 () to the verifier.

Verifier checks if 7(0).7(1) = s'(a’). If not, he rejects otherwise he picks a random ay € F,, and asks the prover to
prove the following :

[LasLay 3y Ly Loy Lo, Loy Ly Lo L Po(3)] o = 1(az).

i€e. [Loy{[Luy Y, Loy Luy Loy, Loy Loy Ly . Ly, Po(T)] = r(az).

To=as }] r1=a’

The last step can be explained as follows :

Consider [Ly, Ly, >, Loy Loy Loy M, Loy Ly Ly .. L, P ()] to be

r1=a’,xo=as
[Lx1 szM(Ih 1‘2)]
~——————

A{/(Il,zg)

1=’ wg—a, (and in this consider Ly, M (21, x2) as M'(z1, z2)).

Applying linearizing operator L, , we get :

= 21 M/(1,) + (1 — 1) M'(0, 22))

T1=a’,z3=a2

= [J;IM/(LCLQ) + (1 - xl)Ml(Oan)]

r1=a’

= [Lzl [M/(.’Eh .’Eg)}

xzzaz] r1=a’

= [Lml [LIQM(xl, 1'2)]

$2:a2] xr1=a'

Now, Verifier asks for { [LQCQHQ,:3 0, Ly LyyLyy... Ly, P, (f)] . } We call it b’ (z1).

h'"(x1)
Prover sends some s’ (z1) to the verifier.

Verifier checks if [Lmls”(zl)]a:l:a, = r(az).

Suppose s”(x1) = h"'(x1). Then,
= [Lxlh”/(xl)] z1=a’
will send r(x2) # g(z2) or else it’ll get caught at the check r(0).r(1) = s'(a’). Hence, a dishonest prover sends

s”(xl) ?é h/”(lﬂl).
Verifier picks a random b, € F), and checks if A" (b1) = s”(b1)

= 5" (by).

IQ:GQ,zlibl -

= g(az) = r(az2). However, g(a2) # r(ag) with high probability as a dishonest prover

ie. [LyyHay... Iy, Loy Ly,Ly, Pp(%)]

And, in this way, the process continues and one by one each operator is shaved off. We will make illustrative argument
more formal and precise in the next lecture.

24.2 References

[1] S. ARORA and B. BARAK “Computational Complexity: A Mordern Approach,” Cambridge University

Lecture 24: Nov 5, 2014 24-5

Press, 2009
[2] http://crypto.cs.mcgill.ca/ crepeau/COMP647/2007/TOPIC0O1/Shamir-IP=PSPACE.pdf

