
E0 224 Computational Complexity Theory Indian Institute of Science, Bangalore
Fall 2014 Department of Computer Science and Automation

Lecture 24: Nov 5, 2014
Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in> Scribe: Sachin Kumar Srivastava

24.1 IP = PSPACE

In the last class, we showed that #SAT ∈ IP. The crucial step, there, was Arithmetization. We converted an instance
of a 3 CNF formula to a polynomial.

ϕ→ Pϕ such that ϕ(b1, b2, ..., bn) = Pϕ(b1, b2, ..., bn), where bi ∈ {0, 1}.

We have already argued, in the last class, that IP ⊆ PSPACE. Now, we have to show that PSPACE ⊆ IP. So, we only
need to show that TQBF ∈ IP as TQBF is PSPACE-complete.

TQBF = { All true quantified boolean formulae }.

QBF : QBF has the form Q1x1Q2x2Q3x3....Qnxnϕ(x1, x2, x3, ..., xn), where each Qi is either ∃ or ∀ and xis are
boolean variables.

Input : y = Q1x1Q2x2Q3x3....Qnxnϕ(x1, x2, x3, ..., xn).

First Observation : We can assume, without loss of generality, that ϕ(x1, x2, x3, ..., xn) is a 3 CNF formula (be-
cause we can convert any SAT instance to an equivalent 3 CNF SAT instance in polynomial time). Let Pϕ be the
arithmetization of ϕ.

Second Observation : y is in TQBF if and only if R1x1R2x2....RnxnPϕ(x1, x2, ..., xn) 6= 0,

where Ri =
∑

xi∈{0,1} if Qi = ∃ and

Ri = Πxi∈{0,1} if Qi = ∀.

For example : ∃xϕ(x) ∈ TQBF ⇐⇒
∑

x∈{0,1} Pϕ(x) 6= 0 and ∀xϕ(x) ∈ TQBF ⇐⇒ Πx∈{0,1}Pϕ(x) 6= 0

(where degree of Pϕ ≤ 3m and underlying field is Fp where p is sufficiently large i.e. p ∈ [22n
2

, 23n
2

]).

∃x1∀x2ϕ(x1, x2) ∈ TQBF ⇐⇒
∑

x1∈{0,1}Πx2∈{0,1}Pϕ(x1, x2) 6= 0.

We will prove by induction that :

Q1x1Q2x2....Qnxnϕ(x1, x2, x3,, xn) ∈ TQBF if and only if(∑
x1∈{0,1} orΠx1∈{0,1}

)(∑
x2∈{0,1} orΠx2∈{0,1}

)
....
(∑

xn∈{0,1} orΠxn∈{0,1}
)
Pϕ(x1, x2,, xn) = k, where k

is some non-zero positive integer and Qi is either ∃ or ∀ and operator for quantification in polynomial for xi depends
upon Qi, i.e. if Qi is ∃, then operator will be

∑
xi∈0,1 and if Qi is ∀, then operator will be Πxi∈{0,1}.

We can see that it is true for the base case when n = 1 i.e. if formula is of the form ∃ϕ(x1), then it belongs to TQBF iff
for either x1 = 0, ϕ(x1) is true or for x1 = 1, ϕ(x1) is true, hence when it is converted to

∑
x1∈{0,1} Pϕ(x1), Pϕ(x1)

will have a non-zero value iff either at x1 = 0, Pϕ(x1) > 0 or at x1 = 1, Pϕ(x1) > 0 or at both Pϕ(x1) > 0, in any
case we will sum both values and hence it is true iff any of these values is greater than zero. On the other hand, if
formula is of the form ∀ϕ(x1), then it belongs to TQBF iff for both x1 = 0, ϕ(x1) is true and for x1 = 1, ϕ(x1) is true,
hence when it is converted to Πx1∈{0,1}Pϕ(x1), Pϕ(x1) will have a non-zero value iff at both x1 = 0, Pϕ(x1) > 0

24-1

Lecture 24: Nov 5, 2014 24-2

and x1 = 1, Pϕ(x1) > 0, in this case we will multiply both values and hence it is true iff all the values are greater than
zero.

We suppose it for n = m. We suppose Q1x1Q2x2....Qmxmϕ(x1, x2, x3,, xm) ∈ TQBF if and only if∑
1 Π2

∑
3ΠmPϕ(~x) 6= 0, where

∑
i represents

∑
xi

and Πi represents Πxi

Now, we have to show that it holds for n = m + 1.
Q1x1Q2x2....QmxmQm+1xm+1ϕ(x1, x2, x3,, xm, xm+1) ∈ TQBF then, it can be written in polynomial form.
Without loss of generality, we can assume that Q1 = ∃.

⇐⇒
[
Q2x2....QmxmQm+1xm+1ϕ(0, x2, x3,, xm, xm+1)

]
∈ TQBF OR[

Q2x2....QmxmQm+1xm+1ϕ(1, x2, x3,, xm, xm+1)
]
∈ TQBF

⇐⇒
[
Π2

∑
3Πm+1Pϕ(0, x2, x3,, xm, xm+1) 6= 0

]
OR[

Π2

∑
3ΠmPϕ(1, x2, x3,, xm, xm+1) 6= 0

]
⇐⇒

[
Π2

∑
3Πm+1Pϕ(0, x2, x3,, xm, xm+1)

]
+[

Π2

∑
3ΠmPϕ(1, x2, x3,, xm, xm+1)

]
6= 0 (.. as each of the expression is a non-negative value).∑

1 Π2

∑
3ΠmPϕ(x1, x2, x3,, xm, xm+1) 6= 0.

Similarly, when Q1 = Π then

Q1x1Q2x2....QmxmQm+1xm+1ϕ(x1, x2, x3,, xm, xm+1) ∈ TQBF then, it can be written in polynomial form.

⇐⇒
[
Q2x2....QmxmQm+1xm+1ϕ(0, x2, x3,, xm, xm+1)

]
∈ TQBF AND[

Q2x2....QmxmQm+1xm+1ϕ(1, x2, x3,, xm, xm+1)
]
∈ TQBF

⇐⇒
[
Π2

∑
3Πm+1Pϕ(0, x2, x3,, xm, xm+1) 6= 0

]
AND[

Π2

∑
3ΠmPϕ(1, x2, x3,, xm, xm+1) 6= 0

]
⇐⇒

[
Π2

∑
3Πm+1Pϕ(0, x2, x3,, xm, xm+1)

]
∗[

Π2

∑
3ΠmPϕ(1, x2, x3,, xm, xm+1)

]
6= 0 (.. as each of the expression must be a non-negative value and

non-zero).

Π1Π2

∑
3ΠmPϕ(x1, x2, x3,, xm, xm+1) 6= 0.

Thus, we have shown the inductive step to be true.

Hence, we can see that Q1x1Q2x2....Qnxnϕ(x1, x2, x3,, xn) ∈ TQBF if and only if(∑
x1∈{0,1} orΠx1∈{0,1}

)(∑
x2∈{0,1} orΠx2∈{0,1}

)
....
(∑

xn∈{0,1} orΠxn∈{0,1}
)
Pϕ(x1, x2,, xn) = k, where k

is some non-zero positive integer.

Recall #SAT ∈ IP argument (LFKN ′90) using Sum-Check protocol :
∑

x1∈{0,1}
∑

xn∈{0,1} Pϕ(x1, x2, x3,, xn) =
k.

Without loss of generality let the input instance be ∃x1∀x2∃x3....∀xnϕ(x1, x2, x3,, xn), where ϕ is a 3-CNF with
m clauses. Let us attempt to apply the Sum-Check protocol.∑

x1
Πx2

∑
x3

....ΠxnPϕ(x1, x2, x3, ..., xn) = k 1.

Prover is trying to convince the verifier that the above equality holds. Verifier should reject with high probability if the
above equality does not hold.

Lecture 24: Nov 5, 2014 24-3

In the beginning, both the verifier and the prover find out the arithmetic expression Pϕ from ϕ (degree of Pϕ ≤ 3m).
Then, the prover sends a k, and a large prime p to the verifier. Then, the rest of the computation happens over Fp.

Let h(x1) = Πx2

∑
x3

....Πxn
Pϕ(x1, x2, ..., xn).

We cannot, straightaway, repeat the previous Sum-Check protocol because of the following issue :

Issue : degx1
(h(x1)) can be exponentially large (may not be a polynomial) because of the products. Hence, it is not

immediately clear if the prover can send h to the verifier.

(Shamir′90) carried on from here and sometime later from (LFKN ′90) got the IP = PSPACE result by fixing this
issue.

Definition : (Linearizing Operator) (xi ∈ {0, 1}) As we see that the degree of the polynomial can be exponential
(because of the ∀ quantifier), hence we try to come up with a technique that controls the degree of this polynomial.
We are just dealing with xi ∈ {0, 1}, hence we know no matter what the degree of xi be in the polynomial, it can be
replaced by just xi because xk

i = xi for xi ∈ {0, 1}. Hence, we define the linearizing operator as follows :

Lxi
P (x1, x2, ..., xn) = xiP (x1, x2, ..., xi−1, 1, xi+1, ..., xn) + (1 − xi)P (x1, x2, ..., xi−1, 0, xi+1, ..., xn). Lxi

can
be written as Li for short. We adjust/modify the previous Sum-Check expression to the following expression(using
linearizing operators to control the degree) :∑

x1
Lx1

Πx2
Lx1

Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(x1, x2, x3, ...xn) = k. 2.

The verifier knows this LHS expression and asks the prover for its value. The prover returns some value, say k, and if
the value is non-zero he asks the prover to send a polynomial h′(x1) that is univariate in x1 :

h′(x1) := Lx1
Πx2

Lx1
Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(x1, x2, x3, ...xn) is h′(x1) (we will see later).

Now, the prover and the verifier have to check this formula instead of the earlier one.

Observation : (1) is true iff (2) is true for {0, 1} values of xi.

e.g. Verifier asks the prover to send h′(x1) = Lx1
Πx2

Lx1
Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(x1, x2, x3, ...xn)
(degx1

(h′(x1)) ≤ 1).

Now, the prover sends some s(x1) (an honest prover sends s(x1) = h′(x1)). Verifier checks if s(0) + s(1) = k, if not
he rejects. Otherwise, he picks a random a ∈ Fp and asks the prover to prove :[
Lx1Πx2Lx1Lx2

∑
x3

Lx1Lx2Lx3ΠxnLx1Lx2Lx3 ...LxnPϕ(x1, x2, x3, ...xn)
]
x1=a

= s(a).

Verifier asks for the polynomial h′′(x1)(deg(h′′(x1)) ≤ 2), where

h′′(x1) = Πx2
Lx1

Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(~x).

Prover returns some s′(x1). Once again, an honest prover sends s′(x1) = h′′(x1).

Verifier checks if
[
Lx1

s′(x1)
]
x1=a

= s(a). Suppose s′(x1) = h′′(x1). Then, Lx1
s′(x1) = h′(x1), and verifier would

be checking if
[
Lx1

s′(x1)
]
x1=a

= h′(a) = s(a) for a random a ∈ Fp. However, h′(a) 6= s(a) with high probability
unless h′(x1) = s(x1). Hence, if s′(x1) = h′′(x1), then a dishonest prover can try to not get caught by sending
h′(x1) = s(x1), but in this scenario it would have already gotten caught at the prior check s(0)+s(1) = k. Therefore,
a dishonest prover’s only chance is to send a s′(x1) different from h′′(x1).

Verifier picks a random a′ ∈R Fp. Then, he asks the prover to prove:[
Πx2

Lx1
Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(~x)
]
x1=a′ = s′(a′).

i.e. Πx2

[
Lx1

Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(~x)
]
x1=a′ = s′(a′).

Lecture 24: Nov 5, 2014 24-4

Verifier asks for the polynomial :
[
Lx1Lx2

∑
x3

Lx1Lx2Lx3ΠxnLx1Lx2Lx3 ...LxnPϕ(~x)
]
x1=a′︸ ︷︷ ︸

g(x2)

.

It is denoted as g(x2); degx2
g(x2) ≤ 1.

Prover sends some r(x2) to the verifier.

Verifier checks if r(0).r(1) = s′(a′). If not, he rejects otherwise he picks a random a2 ∈R Fp and asks the prover to
prove the following :[

Lx1
Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(~x)
]
x1=a′,x2=a2

= r(a2).

i.e.
[
Lx1

{[
Lx2

∑
x3

Lx1Lx2Lx3ΠxnLx1Lx2Lx3 ...LxnPϕ(~x)
]
x2=a2

}]
x1=a′ = r(a2).

The last step can be explained as follows :

Consider
[
Lx1Lx2

∑
x3

Lx1
Lx2

Lx3
.....Πxn

Lx1
Lx2

Lx3
...Lxn

Pϕ(~x)
]
x1=a′,x2=a2

to be[
Lx1

Lx2
M(x1, x2)︸ ︷︷ ︸

M ′(x1,x2)

]
x1=a′,x2=a2

(and in this consider Lx2M(x1, x2) as M ′(x1, x2)).

Applying linearizing operator Lx1 , we get :

=
[
x1M

′(1, x2) + (1− x1)M ′(0, x2)
]
x1=a′,x2=a2

=
[
x1M

′(1, a2) + (1− x1)M ′(0, a2)
]
x1=a′

=
[
Lx1

[
M ′(x1, x2)

]
x2=a2

]
x1=a′

=
[
Lx1

[
Lx2

M(x1, x2)
]
x2=a2

]
x1=a′

Now, Verifier asks for
{[

Lx2
Πx3

.....Πxn
Lx1

Lx2
Lx3

...Lxn
Pϕ(~x)

]
x2=a2︸ ︷︷ ︸

h′′′(x1)

}
. We call it h′′′(x1).

Prover sends some s′′(x1) to the verifier.

Verifier checks if
[
Lx1

s′′(x1)
]
x1=a′ = r(a2).

Suppose s′′(x1) = h′′′(x1). Then,

⇒
[
Lx1h

′′′(x1)
]
x1=a′ = g(a2) = r(a2). However, g(a2) 6= r(a2) with high probability as a dishonest prover

will send r(x2) 6= g(x2) or else it’ll get caught at the check r(0).r(1) = s′(a′). Hence, a dishonest prover sends
s′′(x1) 6= h′′′(x1).

Verifier picks a random b1 ∈R Fp and checks if h′′′(b1) = s′′(b1)

i.e.
[
Lx2Πx3ΠxnLx1Lx2LxnPϕ(~x)

]
x2=a2,x1=b1

= s′′(b1).

And, in this way, the process continues and one by one each operator is shaved off. We will make illustrative argument
more formal and precise in the next lecture.

24.2 References

[1] S. ARORA and B. BARAK “Computational Complexity: A Mordern Approach,” Cambridge University

Lecture 24: Nov 5, 2014 24-5

Press, 2009

[2] http://crypto.cs.mcgill.ca/ crepeau/COMP647/2007/TOPIC01/Shamir-IP=PSPACE.pdf

