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25.1 Interactive Protocol for TQBF (contd)

In the last lecture we discussed arithmetization and linearization operations on TQBFs and designed a
protocol for the same. Then we took the following example∑
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∏
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Lx1
Lx2

∑
x3

. . . Lx1
Lx2

. . . Lxn
Pϕ = k

and traced it for a few iterations, “shaving off” operators from left to right uptill (the first occurrence of)
Lx2 . We now give an inductive description of the protocol.
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where Oxi can be
∑
xi

or
∏
xi

, is the equality that the prover P wants to prove to the verifier V.

The protocol starts with P sending V a suitable prime p so that subsequent computation happens over Fp.
At any step (iteration), V asks P to prove an equality of one of the following forms

[
∑
xj

Lx1
. . . Lxj

Oxj+1
. . . . . . Pϕ]x1=a1,...,xj−1=aj−1

?
= B (case 1)

[
∏
xj

Lx1
. . . Lxj

Oxj+1
. . . . . . Pϕ]x1=a1,...,xj−1=aj−1

?
= B (case 2)

[Lxi
Lxi+1

. . . Lxj
Oxj+1

. . . . . . Pϕ]x1=a1,...,xj=aj

?
= B (case 3) (25.1)

where a1, . . . , aj are values in Fp each randomly chosen in one of the previous rounds.

case 1: For case 1, P sends V the polynomial r(xj) which is supposed to be

[Lx1
. . . Lxj

Oxj+1
. . . . . . Pϕ]x1=a1,...,xj−1=aj−1

.

V checks if r(0) + r(1) = B is true and rejects if not. If true, then it picks aj ∈R Fp, computes r(aj) and
starts next round of iteration with the question:

[Lx1
. . . Lxj

Oxj+1
. . . . . . Pϕ]x1=a1,...,xj−1=aj−1

?
= r(aj).

case 2: Case 2 is the same as case 1 except that V checks if r(0) · r(1) = B instead of r(0) + r(1) = B.

case 3: In Case 3, P sends V a polynomial R(xi) which is supposed to be

[Lxi+1
. . . Lxj

Oxj+1
. . . . . . Pϕ]x1=a1,...,xi−1=ai−1,xi+1=ai+1,...,xj=aj

.
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V checks if aiR(1) + (1− ai)R(0) = B is true and rejects if not.
Let us pause here and elaborate on the substep above. Define Q(x1, . . . , xj) = Lxi+1 . . . LxjOxj+1 · · ·Pϕ and
so that (25.1) can be rewritten as

[Lxi
Q(x1, . . . , xj)]x1=a1,...,xj=aj

?
= B

⇐⇒

[Lxi
{Q(x1, . . . , xj)}x1=a1,...,xi−1=ai−1,xi+1=ai+1,...,xj=aj

]xi=ai

?
= B

⇐⇒

[Lxi{Q′(xi)}]xi=ai

?
= B

where Q′(xi) = Q(x1, . . . , xn)x1=a1,...,xi−1=ai−1,xi+1=ai+1,...,xj=aj
, which is what R(xi) is supposed to be.

Thus, whenever P is honest,

aiR(1) + (1− ai)R(0) = [Lxi
{Q′(xi)}]xi=ai

= B.

Continuing, V picks bi ∈R Fp, computes R(bi) and starts next round of iteration with the question:

[Lxi+1
. . . Lxj

Oxj+1
. . . . . . Pϕ]x1=a1,...,xi−1=ai−1,xi=bi,xi+1=ai+1,...,xj=aj

?
= R(bi)

�

On a side note, observe that at times R(xi) can be quadratic in xi. This can happen specifically when
R(xi) is supposedly a polynomial of the form [

∏
xi+1

Lx1 . . . Pϕ]x1=a1,...,xi−1=ai−1 .

The proof of correctness of the protocol follows as in the case of #SAT.
�

25.2 Probabilistically Checkable Proofs (PCPs)

25.2.1 Introduction

There are two ways to view PCPs. Later we will show that the two views are equivalent.

First view: Locally Testable Proof Systems
We know that for a language in NP there is a verifier which takes input x and a certificate (“proof”) u, and
decides x. The proof has polynomially many bits that can be accessed by the verifier sequentially. Consider
now a slightly different scenario where the verifier has random access to the proof, and by just reading very
few - say constant number of - bits at random locations in the proof, the verifier can decide x correctly with
high probability. Such proof systems are known as Locally Testable Proof Systems.
This view may remind us of Hadamard codes (see Lecture 18), since in Hadamard codes it is sufficient to
read only two bits of the codeword to retrieve a bit of the message with high guarantee of correctness. Note
here that the length of the codeword was exponential in the length of the message.

Second view: Hardness of approximation
This view proves certain inherent limits of approximation algorithms for optimization versions of NP-complete
problems. Examples of such problems are maximum independent set, maximum clique size, minimum vertex
cover, etc. While we know efficient approximation algorithms for some of them, “there is a limit on the
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factors with which the optimal solution can be efficiently approximated”[2], assuming P 6= NP. Below we
discuss some NP-hard optimization problems and analyze their approximation algorithms.

MAX− 3SAT (Optimization version of 3SAT)
Let ϕ be a 3CNF with m clauses and n variables. For any assignment u ∈ {0, 1}n, let val(ϕ(u)) be the
fraction of clauses satisfied by the assignment u.
Define val(ϕ) := max

u∈{0,1}n
val(ϕ(u)).

Now MAX− 3SAT is the task to computing a u from a given ϕ such that val(ϕ) = val(ϕ(u)).
Definition: An algorithm A is said to be a ρ-approximate algorithm for MAX− 3SAT if for every given ϕ,

A outputs a u such that val(ϕ(u))
val(ϕ) ≥ ρ.

Example 1 ( 1
2 -approximation algorithm for MAX− 3SAT)

Algorithm A:
Input: 3CNF ϕ(x1, . . . , xn).
Step 1: If the all-zeros assignment i.e u = {0}n satisfies at least half of the clauses in ϕ then output {0}n.
Otherwise output {1}n.�

Proof that A is 1
2 -approximate: Every clause is satisfied by at least one of the assignments {0}n and

{1}n. Thus either of the assignments satisfies at least half of the clauses in ϕ. �

Example 2 (2-approximation algorithm for MINIMUM VERTEX COVER)

This being a minimization problem, we define ρ-approximation suitably:
Definition: An algorithm A is said to be a ρ-approximate algorithm for MINIMUM VERTEX COVER if for

every given G(V,E), A outputs S ⊆ V such that |S||T | ≤ ρ, where |T | is the size of the minimum vertex cover.

Algorithm B:
Input: G = (V,E).
Step 1: Let S = {}.
Step 2: If there are no edges in G, go to step 3. Otherwise, pick an arbitrary edge e(u, v) ∈ E and add both
u and v to S. Delete u, v from G along with all the edges incident on u or v. Repeat step 2.
Step 3: Output S.

Proof that B is 2-approximate: The edges we arbitrarily picked one in each iteration form a matching
since they are pairwise disjoint. Further, at least one of the endpoints of every edge of the matching is in a
minimum vertex cover (by definition) while both the endpoints are added in S by the algorithm. Hence the
size of S is at most twice the size of the actual vertex cover, making the algorithm 2-approximate. �
It is conjectured that ρ = 2 is the lower bound. The proven lower bound till date is ρ = 1.36 due to Dinur
and Safra (2005). The proof uses PCP theorem.

Example 3 (7/8-approximation algorithm for MAX− 3SAT)
Algorithm C (randomized):
Input: 3CNF Randomly pick ϕ(x1, . . . , xn).
Step 1: Randomly pick an assignment from {0, 1}n and output it.

Proof that C is 7/8-approximate:

Let Xi =

{
1 if clause i is satisfied

0 otherwise

It is easy to see that any clause with 3 variables is satisfied by 7 out of all 8 possible assignments. Hence
E[Xi] = 7/8 for 1 ≤ i ≤ m.
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Let X = number of clauses satisfied. Then X =
m∑
i=1

Xi. Further, from linearity of expectations we have

E[X] = E[

m∑
i=1

Xi] =

m∑
i=1

E[Xi] =

m∑
i=1

(7/8) = 7m/8

We can show that probability of satisfying at least a 7/8 − 1/(2m) fraction (where m is the number of
clauses) is at least 1/poly(m). There is also a deterministic algorithm for the problem based on conditional
expectation. Also, note that if there were q literals in every clause, we could similarly come up with a
(1− 1/2q)-approximation algorithm.
Theorem: There is a 7

8 -approximation algorithm for MAX− 3SAT
Theorem (H̊astad): If there is a ( 7

8 + ε)-approximation algorithm for MAX− 3SAT for any ε > 0 then
P = NP.
Proof of the theorem uses PCP theorem, which we will define more formally now.

25.3 Two views of the PCP Theorem (in detail)

The PCP theorem can be formulated in two alternative ways as described briefly above, and we shall state
those in more details and prove equivalence of the two different views.

Definition 25.1 ((r(n), q(n))− PCP verifier) Let L ⊆ {0, 1}∗ be a language and q, r : N → N. We say
that L has a (r(n), q(n))−PCP verifier if there exists a probabilistic poly-time algorithm V , which on input
x(| x |= n), and given access to a proof u(| u |≤ 2r(n).q(n)),

1. uses r(n) random bits and queries the proof u, at q(n) locations, and outputs 1(accept) or 0(reject)
accordingly.

2. if x ∈ L, ∃u (the correct proof) such that Pr{V (x, u) = 1} = 1. (Completeness)

3. if x ∈ L, then ∀u, Pr{V (x, u) = 1} ≤ 1/2. (Soundness)

Note that the verifier algorithm V has polynomial runnning time, therefore r(n) must be a polynomial in
n. Also, since most PCP Theorems can be proved using non-adaptive verfiers, V is generally assumed to be
non-adaptive.

Definition 25.2 (Class PCP(r(n), q(n))) A language L ∈ PCP(r(n), q(n)) if L has a (c.r(n), d.q(n))−PCP
verifier, for some constants c and d.

Having defined the above complexity class of efficient PCP verifiers, we state the first version of the PCP
theorem.

25.3.1 PCP Theorem (locally testable proofs version)

Theorem 25.3 NP = PCP(log n, 1)

Therefore, this version of the PCP theorem states that every language in NP has a highly efficient PCP
verifier.
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Remarks:

1. Without loss of generality, the length of the proof u, for a (r(n), q(n))-verifier is bounded by 2r(n).q(n),
because that is the maximum number of locations that can be queried by the verifier. If it uses r(n)
bits, then the index of the location it would query would lie in an interval of size 2r(n), and there can
be at-most q(n) such intervals that can be covered by the queries.

2. PCP(r(n), q(n)) ⊆ NTIME(2r(n).q(n))
Proof: Suppose L has a (c.r(n), d.q(n))− PCP verifier, we need to show that L ∈ NTIME(2r(n).q(n)).
For any string x, the proof u can be guessed non-deterministically in 2O(r(n).q(n) time and then
determinitically verified by running the verifier for all possible choices of r(n) random bits. If the
verifier accepts for all 2O(r(n) possibilities, then we can accept that x ∈ L, else reject. Thus, this is a
2O(r(n).q(n) non-deterministic algorithm to decide L.[1]

3. The above statement implies one-side of the PCP theorem, that is PCP(log n, 1) ⊆ NP. Basically,
the more interesting direction to prove is NP ⊆ PCP(log n, 1). We will later prove a weaker version:
NP ⊆ PCP(poly(n), 1).

25.3.2 PCP Theorem (Hardness of approximation version)

Theorem 25.4 There exists a constant ρ(0 < ρ < 1), such that for every language L ∈ NP, there is a
deterministic poly-time reduction function f , such that f on input x, outputs a representation of a 3−CNF
formula φx, satisfying

• if x ∈ L, val(φx) = 1

• if x /∈ L, val(φx) < ρ

This version of the PCP theorem states the impossibility of the existence of approximation algorithms for
the optimization versions of various NP-complete problems, beyond a certain limit, under the assumption
that P 6= NP. Consider the following corollary as an example:

Corollary 25.5 Let ρ be the constant in the above theorem, then ρ-approximation of MAX− 3SAT is NP-
hard.

Proof: In other words, we want to prove that any language L ∈ NP can be reduced to the ρ-approximation
of MAX− 3SAT.(0 < ρ < 1) Let A be the ρ-approximation algorithm for MAX− 3SAT. Then, given any
string x ∈ {0, 1}∗, we show that we can use the deterministic poly-time reduction described as in Theorem
25.4 and the algorithm A, to determine whether x ∈ L or not. The algorithm proceeds as follows:

• Given the string x, apply the reduction f and output φx such that if x ∈ L, val(φx) = 1 and, if
x /∈ L, val(φx) < ρ.

• Give the boolean formula φx as input to the algorithm A, which outputs an assignment u which would
satisfy at-least a ρ fraction of the maximum satisfiable clauses, val(φx). i.e val(φx(u))/val(φx) ≥ ρ,
where val(φx(u)) refers to the fraction of total clauses satisfied by the assignment u.

• Now, if it is the case that x ∈ L, then the assignment u, by definition of A, val(φx(u)) ≥ ρ.

• otherwise, if x /∈ L, then as val(φx) < ρ, then val(φx(u)) can be at-most equal to val(φx), and therefore
strictly less than ρ.
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Thus, by checking the value of val(φx(u)), we can deterministically distinguish between the cases x ∈ L and
x /∈ L, which proves that the algorithm A is NP-hard.
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