
E0 224 Computational Complexity Theory

Lecture 26

Lecturer: Chandan Saha

Scribe: Sandip Sinha and Sabareesh R

November 12, 2014

In this lecture, we will state two views of the PCP Theorem and show that they are equivalent. We will

also show a hardness of approximation result for MAX-IND-SET.

We begin by mentioning a couple of results which led to the PCP Theorem.

Result: (Arora and Safra 1992)

NP = PCP(log n,
√

log n)

Result: (Arora, Lund, Motwani, Sudan and Szegedy 1992)

NP = PCP(log n, 1).

1 Two versions of PCP Theorem:

Theorem 1.1. NP = PCP(log n, 1).

Theorem 1.2. There exists a constant 0 < ρ < 1 such that for every language L in NP, there is a

deterministic polynomial-time computable function f that maps strings in {0, 1}∗ to representations of

3CNF formulae such that:

x ∈ L⇒ val(f(x)) = 1

x /∈ L⇒ val(f(x)) < ρ

Since the output of f on x is a 3CNF formula, we shall denote f(x) by φx.

We will show in this lecture that Theorem 1.1 is equivalent to Theorem 1.2.

Definition: (q-CSP)

An instance of a q-CSP (CSP is an acronym for Constraint Satisfiability Problem), denoted by φ, is a

tuple of clauses φ = {φ1, φ2, ..., φm} such that every clause φi depends on at most q variables.

In a q-CSP, a clause is not necessarily an ∨ of literals. It is a general boolean formula.

Note: In this lecture, we will assume that q is a constant.

Definition: val(φ), where φ is an instance of a q-CSP, is defined to be the maximum fraction of clauses

(i.e. the φi’s) that can be satisfied (by any assignment to the variables).

1



ε-gap q-CSP Problem:

Given a q-CSP φ with the promise that:

• either val(φ) = 1,

• or val(φ) < ε (where ε is a constant),

find out whether val(φ) = 1 or val(φ) < ε.

Given a ε-gap q-CSP Problem, we can define languages LY and LN in the natural way:

LY = {φ : φ is a q-CSP instance and val(φ) = 1}
LN = {φ : φ is a q-CSP instance and val(φ) < ε}
We shall call a q-CSP φ a Yes-instance of the ε-gap q-CSP Problem if φ ∈ LY (i.e., if val(φ) = 1) and a

No-instance if φ ∈ LN (i.e., if val(φ) < ε).

Note: The input size of an ε-gap q-CSP Problem is the size of φ, which is O (m(q log n)2q), where n is

the number of variables and m is the number of clauses in φ. Since q is assumed to be a constant, the

input size is polynomial in m and n.

Theorem 1.3. There exist constants ε > 0 and q > 0, such that ε-gap q-CSP problem is NP-hard.

The meaning of the theorem is as follows:

There exist constants ε > 0 and q > 0, such that for any language L ∈ NP, there is a polynomial-time

computable function f that maps x ∈ {0, 1}∗ to an instance of q-CSP, such that f maps x ∈ L to a

string in LY , i.e., a Yes-instance of ε-gap q-CSP and x /∈ L to a string in LN , i.e., a No-instance of ε-gap

q-CSP.

We will show that Theorem 1.1 and Theorem 1.2 are equivalent by showing that they are both equivalent

to Theorem 1.3.

Theorem 1.4. Theorem 1.1 is equivalent to Theorem 1.3.

Proof. Theorem 1.1 ⇒ Theorem 1.3:

Since 3-SAT is NP-complete, it is enough to reduce 3-SAT to ε-gap q-CSP for some ε and q. By Theorem

1.1, 3-SAT has a (c log n, d)-PCP verifier V for some constants c and d. Thus, V uses c log n random

coins and makes d queries to the proof y. We fix the input x to be a 3CNF instance of size n. Then

the proof size is at most dnc. For a fixed input x and fixed r ∈ {0, 1}c logn, V reads some fixed d bits

of the proof y (say i1, i2, ..., id) and its computation is deterministic and takes polynomial time. Hence

the output of V on x and r can be thought of as a boolean function in yi1 , ..., yid . We denote the

corresponding boolean formula φx,r. Now we consider the following reduction:

x→ {φx,r}r∈{0,1}c log n

We denote the output of this reduction by φ. Clearly, φ is a d-CSP instance since for each r, φx,r

depends on at most d variables. φ has size polynomial in n since there are at most nc choices for r, each

of which corresponds to a clause {φx,r}. Moreover, since V runs in polynomial time, this reduction can

be computed in polynomial time. Finally, by the completeness and soundness properties of the PCP

2



verifier V , we have:

x ∈ 3SAT ⇒ val(φ) = 1

x /∈ 3SAT ⇒ val(φ) <
1

2

Corollary : 1
2 -gap d-CSP is NP-hard. Thus we have shown Theorem 1.1 implies Theorem 1.3 with

ε = 1
2 , q = d.

Theorem 1.3 ⇒ Theorem 1.1:

Theorem 1.3 implies that there exist constants ε > 0, q > 0 such that ε-gap q-CSP is NP-hard. This

means there is a polynomial time reduction from 3SAT to ε-gap q-CSP

x→ φx = {φx,1, ..., φx,m}

which has the following property:

x ∈ 3SAT ⇒ val(φx) = 1

x /∈ 3SAT ⇒ val(φx) < ε

Each clause φx,i depends on at most q variables. Further, since the reduction is computable in polyno-

mial time, the number of clauses m is polynomial in size of x.

Let x be a 3CNF formula of size n. We describe a (O(log n), q)-PCP-verifier V for 3SAT:

1. V applies the reduction to ε-gap q-CSP.

2. V picks a clause uniformly at random from {φx,1, ..., φx,m}, where m is the number of clauses in

φx. It expects the proof to be an assignment to the variables of φx.

3. Suppose φx,i depends on yi1 , ..., yiq . Then the verifier reads q locations i1, ..., iq of the proof and

finds out if φx,i is satisfied by the corresponding assignment to yi1 , ..., yiq . If φx,i is satisfied then

V accepts x, otherwise V rejects x.

Observation: V is a (O(log n),O(1))-PCP-verifier for 3SAT.

Since the number of clauses is polynomial in n, O(log n) random bits are enough to pick a clause in φx.

Also, the verifier reads q (constantly many) locations of the proof. Finally, V runs in polynomial time

since the reduction is computable in polynomial time.

If x ∈ 3SAT , then val(φx) = 1, hence the clause φx,i chosen randomly by V must be satisfied. If

x /∈ 3SAT , V will accept x with probability at most ε. Since the error is one-sided, this probability can

be reduced below 1
2 by just repeating the process independently a few times.

Theorem 1.5. Theorem 1.2 is equivalent to Theorem 1.3

Proof. Theorem 1.2 ⇒ Theorem 1.3:

This is obvious since a 3CNF formula is a special case of a q-CSP instance with q = 3 and each clause

being an ∨ of literals. Let L ∈ NP. By Theorem 1.2, there is a polynomial-time computable reduction

from L to 3SAT

x→ φx

3



such that

x ∈ L⇒ val(φx) = 1

x /∈ L⇒ val(φx) < ρ

Since φx is a 3CNF formula, it is a 3 − CSP instance. Therefore, Theorem 1.2 implies Theorem 1.3 if

we take q = 3 and ε = ρ.

Theorem 1.3 ⇒ Theorem 1.2:

Suppose ε-gap q-CSP is NP-Hard.

Consider any L ∈ NP. Then there is a reduction from L to ε-gap q-CSP. Let the reduction give m

boolean functions, where m is polynomial in the size of the input.

x→ φx = {φx1 , φx2 , . . . , φxm}

x ∈ L =⇒ val(φx) = 1

x /∈ L =⇒ val(φx) < ε

Each φxi is a boolean function that depends on at most q variables. These q variables can be assigned

0 or 1 in 2q different ways. Consider those assignments at which the function evaluates to 0. Suppose

the assignment is x1 = a1, x2 = a2, . . . , xq = aq, then consider the clause given by the disjunction of the

variable xi if ai = 0 and x̄i if ai = 1. This clause evaluates to true iff the assignment to the variables

is not a1, . . . , aq. Similarly a clause can be constructed for all the assignments on which the function

evaluates to 0. There are at most 2q clauses for each φi. Consider the conjunction of all these clauses.

This evaluates to 1 iff the assignment to the variables is different from each of those assignments on

which the function evaluates to 0. Thus the q-CNF formula computes the function φi. For each φi such

a formula is constructed and their conjunction is considered. The size of the CNF formula is at most

O(2qm) which is polynomial in input size if q is a constant. Let πx be this CNF formula.

If val(φx) = 1, then there is an assignment on which all φi evaluate to 1 and hence all clauses in πx are

satisfied. So val(πx) = 1.

If val(φx) < ε, then for any assignment at least (1 − ε)m functions in φ are not satisfied. So in πx at

least one clause corresponding to each of these φi is not satisfied. Hence at least (1− ε)m clauses are not

satisfied. The total number of clauses is less than 2qm. So at least (1−ε)
2q of the clauses are not satisfied.

Thus val(πx) < 1− 1−ε
2q . Let α = 1−ε

2q .

Now we convert the q-CNF formula πx to a 3SAT formula ψx. Let ψx = c1 ∧ c2 ∧ . . . ∧ cr and ci =

xi1 ∨ xi2 ∨ . . . ∨ xik.

We introduce a new variable zi. Let ci1 = xi1 ∨ xi2 ∨ . . . ∨ xi(k−2) ∨ zi and

ci2 = xi(k−1) ∨ xik ∨ z̄i
Now if ci has a solution, then one of the xij must be 1. Setting the zi term in the same clause to 0, both

the clauses will be satisfied. Also if the clause is not satisfiable, then all the xij must be 0 and zi terms

prevent both formulas from being satisfied simultaneously. Hence ci is satisfiable if and only if ci1 ∧ ci2
is satisfiable. We can proceed inductively to reduce the clause to a conjunction of clauses with at most

3 literals. Proceeding similarly the entire formula πx can be written in the 3-CNF form. In each of the

new clauses, by construction, at least one of the original literals exists. Thus the new number of clauses

is at most q2qm.

Each clause in πx is represented by atmost q clauses in ψx. If val(πx) = 1, then there is a satisfying

4



assignment for πx and that assignment alongwith a suitable assignment for the new variables satisfies

every clause of ψx. Thus val(ψx) = 1.

Suppose the number of clauses in πx is r. If val(πx) < 1 − α, then for every assignment at least αr

clauses are not satisfied. Thus atleast one of the q clauses corresponding to each of the αr clauses is

not satisfied. The total number of clauses in ψx is at most qr. So at least α
q qr clauses are not satisfied

or a fraction α
q of the clauses are not satisfied. Hence val(ψx) < 1 − α

q . Also, since ε < 1, α > 0. Let

ρ = 1− 1−ε
q2q .

x ∈ L =⇒ val(ψx) = 1

x /∈ L =⇒ val(ψx) < ρ

Thus the membership problem for the language L is reduced to the problem of ρ-approximation of 3SAT.

This is true for all languages L ∈ NP. Hence there is a constant ρ such that the ρ approximation of

3SAT is NP-Hard.

2 Hardness of Approximation

Approximation algorithms are one means of coping with NP-complete problems. In problems where in a

certain optimum value is to be determined, such as the size of the minimum vertex cover of a graph, there

might not be any known efficient algorithms to compute the optimum value. However, we might be able

to compute a value that is an approximation of the optimum value. For a maximization problem, we try

to find a value that may be less than the optimum but greater than ρ times the optimum value (ρ < 1).

Similarly, for a minimization problem, we try to find a value that may be more than the optimum but

less than ρ times the optimum value (ρ > 1).

Now we try to see how good an approximation can we make to the optimum value.

Theorem 2.1 (Hardness of approximation for MAX-IND-SET). There exists a constant α < 1 such

that an α approximation of MAX-IND-SET is NP-Hard.

The theorem can also be stated as, if there is a polynomial time α-approximation algorithm for MAX-

IND-SET, then P=NP.

Proof. Consider φ an instance of the 3-CNF SAT problem. Then φ = φ1 ∧ φ2 ∧ . . . ∧ φm where each

φi is of the form φi = xi1 ∨ xi2 ∨ xi3. Consider the graph Gφ constructed from this formula φ. There

are 7m vertices in the graph Gφ. The 7m vertices are in m clusters of 7 vertices each. Each cluster

corresponds to one of the clauses φi. The 7 vertices in that cluster represent the 7 different assignments

of the three variables in the clause φi that make φi evaluate to true. There is an edge between any two

vertices within the cluster. Also, if two vertices represent two partial conflicting assignments, then there

is an edge between them. Two partial assignments are conflicting if they assign the same variable two

different values. The graph for the formula φ = (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄4 ∨ x̄5) is as follows:

5



000

001
011

100

101

110
111

000

001
010

100

101

110
111

x1 ∨ x̄2 ∨ x3 x2 ∨ x̄4 ∨ x5

Given the formula φ, we can construct the graph by storing along with each vertex the variables in the

corresponding clause and the assignment. The 7m vertices can be determined in time O(m) since each

clause has at most 8 assignments possible. Between any two vertices, we only need to check if they

have a conflicting assignment and to determine if there is an edge between them. Thus the graph can

be constructed in time polynomial in the size of the input. Let the number of vertices in the graph be

t = 7m.

Claim 1. val(φ)= |MAX-IND-SET(Gφ)|

Proof. Consider any assignment y to the variables in φ. Consider all clauses φi that are satisfied by this

assignment. Each of these clauses have a specific value assigned to its variables. Consider those vertices

in the graph that correspond to these assignments. There is at most one vertex from each cluster. Also,

since this is a valid assignment, no two vertices have a conflicting assignment and hence have no edges

between them. Thus this forms an independent set. The size of this independent set is equal to the

number of clauses satisfied in the formula φ. Let yo be the assignment that maximises the number of

clauses. Corresponding to this assignment also there is an independent set in the graph of size equal to

number of satisfied clauses. Hence val(φ) ≤ |MAX-IND-SET(Gφ)|.
Consider the maximum independent set I of the graph Gφ. No two vertices of I can lie in the same

cluster since there is an edge between any two vertices in the same cluster. Also, no two conflicting

vertices in the graph have an edge between them. So every variable in φ is assigned only one value.

Thus these vertices give an assignment of values for some of the variables in φ. The unassigned variables

are all set to 0. Consider φ with this assignment. All the clauses corresponding to the vertices in the

graph are satisfied by this assignment. Hence the number of clauses satisfied is at least the size of the

independent set. Thus val(φ) ≥ |MAX-IND-SET(Gφ)|.
Thus val(φ)= |MAX-IND-SET(Gφ)|. This completes proof of the claim.

Consider any language L ∈ NP. Then by PCP Theorem, we have a reduction from L to 3-CNFSAT

given by x→ φx such that

x ∈ L =⇒ val(φx) = 1

x /∈ L =⇒ val(φx) < ρ

This reduction is computable in time polynomial in size of the input and the 3-SAT formula is also of

size polynomial in the size of the input. Let m be the number of clauses in the formula.

6



Given the formula φ, we can construct the graph Gφ in time polynomial in the size of the formula, and

hence in time polynomial in size of the input. Also,

val(φ) = 1 =⇒ |MAX-IND-SET(Gφ)| = m

val(φ) < ρ =⇒ |MAX-IND-SET(Gφ)| < ρm

Combining the two relations above:

x ∈ L =⇒ |MAX-IND-SET(Gφ)| = m

x /∈ L =⇒ |MAX-IND-SET(Gφ)| < ρm

Suppose there is a TM M that gives a ρ-approximation for MAX-IND-SET problem. Then

val(φ) = 1 =⇒ |MAX-IND-SET(Gφ)| > ρm

val(φ) < ρ =⇒ |MAX-IND-SET(Gφ)| < ρm

Consider a TM N that takes an instance x of the language L, converts it to the 3SAT formula and then

to the corresponding graph in polynomial time. It then simulates M on the graph constructed. If the

output of M is greater than ρm, it outputs 1 and otherwise 0. Thus x ∈ L ⇐⇒ M(x) = 1. The

running time for the machine N is polynomial in the size of the input since each step takes polynomial

time. Hence this implies that L ∈ P. This is true for all L ∈ NP.

Thus if there is a ρ-approximation for MAX-IND-SET, then P = NP.

Hence there is a constant α such that an α approximation of MAX-IND-SET is NP-Hard.

Theorem 2.2. For any constant α ≤ 1, α-approximation of MAX-IND-SET is NP-Hard.

Proof. From the previous theorem we have that a ρ-approximation of MAX-IND-SET is NP-Hard.

Given a graph G=(V,E) consider the map G→ Gk. The vertices in Gk correspond to all the subsets of

vertices of G of size k. So Gk has
(|V |
k

)
vertices. Let the vertices be labelled S1, S2, .... There is an edge

between Si and Sj iff the set Si ∨ Sj is not an independent set.

Claim 2. |MAX-IND-SET(Gk)| =
(
|MAX-IND-SET(G)|

k

)
where

(
i
j

)
= 1 if i < j.

Proof of claim: Suppose I is a maximum independent set of the graph G. Then any k sized subset of

this set is also an independent set. Union of two such subsets is also independent. Thus the
(|I|
k

)
sets

form an independent set in Gk. If |I| < k, then all sets of k vertices are dependent. So, |MAX-IND-

SET(Gk)| = 1 =

(
|I|
k

)
. Thus, |MAX-IND-SET(Gk)| ≥

(
|MAX-IND-SET(G)|

k

)
.

Suppose J = {J1, J2, ..., Jr} is a maximum independent set of Gk. Suppose r = 1, then all k + 1 size

sets of vertices are dependent. So |MAX-IND-SET(G)| < k + 1. So, |MAX-IND-SET(Gk)| = 1 =(
|MAX-IND-SET|

k

)
.

Suppose r > 1. Let V = J1 ∪ J2 ∪ . . . ∪ Jr. Suppose V is not an independent set in G. Suppose there

is an edge between u ∈ V and v ∈ V . u ∈ Ji and v ∈ Jj for some i and j. If i 6= j, then Ji ∪ Jj is not

independent and hence J is not an independent set in Gk. If i = j, Ji ∪ Jk is not independent for any

k ≤ r, k 6= i and so J is not an independent set in Gk. Since the set J is given to be independent in Gk,

V is also an independent set in G. Let L be the set of all k sized subsets of V. Then |L| =
(|V |
k

)
. Also

all vertices in J are a subset of L by the definition of V. So |J | ≤ |L|. Also, |V | ≤ |MAX-IND-SET|(G).

Thus |MAX-IND-SET(Gk)| ≤
(
|MAX-IND-SET(G)|

k

)
.

Hence, |MAX-IND-SET(Gk)| =
(
|MAX-IND-SET(G)|

k

)
.

This completes the proof of the claim.

7



Let L ∈ NP. From the reduction used in the proof of the previous theorem we have that,

x ∈ L =⇒ |MAX-IND-SET(G)| = t

x /∈ L =⇒ |MAX-IND-SET(G)| < ρt

where 7t is the number of vertices in G.

So, x ∈ L =⇒ |MAX-IND-SET(Gk)| =
(
t
k

)
x /∈ L =⇒ |MAX-IND-SET(Gk)| <

(
ρt
k

)

(
ρt

k

)
(
t

k

) =
(ρt)! k! (t− k)!

k! (ρt− k)! t!

=
(ρt)! (t− k)!

(ρt− k)! t!

=
(ρt) (ρt− 1) (ρt− 2) . . . (ρt− k + 1)

t (t− 1) (t− 2) . . . (t− k + 1)

= ρk
(t) (t− 1

ρ
) (t− 2

ρ
) . . . (t− k − 1

ρ
)

t (t− 1) (t− 2) . . . (t− (k − 1))

≤ ρk (as t− i

ρ
< t− i, since ρ < 1)

Hence, x /∈ L =⇒ |MAX-IND-SET(Gk)| < (ρ)k
(
t
k

)
.

Thus the problem has been reduced to the ρk-approximation of MAX-IND-SET.

For any constant α, there is a constant k such that ρk < α. An α-approximation is also a ρk approxi-

mation. Thus the α-approximation of MAX-IND-SET is NP-Hard for all constants α.

References

[1] S. Arora and B. Barak, “Computational Complexity: A Modern Approach”, Cambridge University

Press, 2009

8


