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28.1 Proof of PCP theorem(weaker version)

In this lecture we will continue the proof of PCP theorem stated in the lecture 27. Notations are borrowed from the
previous lecture. Recall from the previous lecture, certificate π will consist of g1 and g2, where g1 = fu ∈ {0, 1}2

n

and g2 = fu⊗u ∈ {0, 1}2
n2

are Walsh-Hadamard encoding of strings u and u ⊗ u respectively. The verification
process consists of the following steps.

• Step 1: Verify that both g1 and g2 are W-H(Walsh-Hadamard) codes of some strings u and w i.e. check if

– g1 = fu, where u ∈ {0, 1}n

– g2 = fw, where w ∈ {0, 1}n
2

• Step 2: Check if w = u⊗ u where u and w are described in step 1.

• Step 3: Check if u is indeed a satisfying assignment for the input system of quadratic equations over F2 (see
previous lecture)

Theorem 28.1. NP ⊆ PCP(poly(n),1)

Proof. Proof is continued from the last lecture.

Claim 28.2. Walsh-Hadamard codewords of length 2q are precisely linear functions on q-length strings.

Proof. See lecture 27 for the prove.

Step 3 has already been proved in previous lecture, here we will show step 1 and step 2 by using the above claim i.e.
it suffices to check whether the given 2q-length string is a truth table for a linear function on q-length strings. For
checking whether a function say f is linear or not, i.e. (f(x + y) = f(x) + f(y),∀x, y ∈ {0, 1}q , where addition of
vectors x and y is coordinate wise over F2) we have to read all 2q values of f . We will define a test that on one hand
accepts every linear function, and on the other hand rejects with high probability every function that is far from linear.
For this we need to formally define the closeness between two functions.

Definition 28.3. Closeness between two boolean functions: Let g and h be two boolean function (i.e. g, h : {0, 1}q →
{0, 1}). We say g is (1− ε)−close for ε ∈ [0, 1] to h if

Pr
x∈R{0,1}q

[g(x) = h(x)] ≥ 1− ε

Definition 28.4. We say that a function g : {0, 1}q → {0, 1} is (1 − ε)−close to a linear function if there exists a
linear function h : {0, 1}q → {0, 1} s.t. g is (1− ε)−close to h.

28-1
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28.2 Linearity testing : BLR(Blum, Luby, Rubinfeld ’90)

Theorem 28.5. Let g : {0, 1}q → {0, 1}. If

Pr
x,y∈R{0,1}q

[g(x+ y) = g(x) + g(y)] ≥ 1− ε for ε ∈ [0, 1]

then g is (1− ε)−close to a linear function.

Note: If we repeat this test O( 1ε ) times the error probability will reduce to (1− ε) 100
ε , (say).

Remark: The BLR test implies that verifier can check if g1 and g2 are (1 − ε)−close to linear function using
O(1) queries to the proof π and time poly(q). After step 1 verification, verifier knows that w.h.p (say .99) g1 is 9

10

close to fu for some u ∈ {0, 1}n, and g2 is 9
10 close to fw for some w ∈ {0, 1}n

2

.

28.3 Local decoding of W-H code

Given g ∈ {0, 1}2
q

and suppose g is (1 − ε)−close to fz for some z ∈ {0, 1}q . Since g is (1 − ε)− close to fz our
task is to find fz(r) from g given r ∈ {0, 1}q by using O(1) queries to g.

• Pick r1 ∈R {0, 1}q

• Output g(r1) + g(r + r1)

Claim 28.6. fz(r) = g(r1) + g(r + r1) with probability atleast 1− 2ε

Proof. Since fz is (1− ε)−close to g, we have

Pr
r1∈{0,1}q

{g(r1) 6= fz(r1)} < ε

Note that both r1 and r + r1 are uniformly distributed over {0, 1}q .Hence

Pr
r1∈{0,1}q

{g(r + r1) 6= fz(r + r1)} < ε

Therefore with probability atleast 1− 2ε (by union bound)

g(r1) + g(r + r1) = fz(r1) + fz(r + r1)

= fz(r1) + fz(r) + fz(r1) fz is linear function
= fz(r) fz(r1) + fz(r1) = 0 (over F2 )

Remark: By above claim w.l.g we can assume that we can read arbitrary bits fu and fw correctly w.h.p. from g1 and
g2 where g1 is (1− ε)−close to fu and g2 is (1− ε)−close to fw.

Now we indeed to show that w = u⊗ u. Let us assume

W = (wij)i,j∈[n] ∈ Fn×n2

Similarly we can think of u⊗ u = U ∈ Fn×n2 we need to check whether W ?
= U . Here is the procedure
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Table 28.1: Truth tables before and after notational switch

Boolean world real world
0 + 0 = 0 1 * 1 = 1
0 + 1 = 1 1 * -1 = -1
1 + 0 = 1 -1 * 1 = -1
1 + 1 = 0 -1 * -1 = 1

• Pick two vectors r
′

and r
′′

randomly form {0, 1}n

• Check if fu(r
′
)fu(r

′′
) = fw(r

′ ⊗ r′′
)

L.H.S. = fu(r
′
)fu(r

′′
)

fu(r
′
)fu(r

′′
) = (

n∑
i=1

uir
′

i)(

n∑
j=1

ujr
′′

j )

=
∑
i,j∈[n]

uiujr
′

ir
′′

j

= r
′TUr

′′

R.H.S. = fw(r
′
⊗ r

′′
)

fw(r
′
⊗ r

′′
) =

∑
i,j∈[n]

wijr
′

ir
′′

j

= r
′TWr

′′

Hence the above check implies that

r
′TUr

′′
= r

′TWr
′′

⇒ r
′T (U +W )r

′′
= 0

r
′TV r

′′
= 0 say V = U +W

If U 6=W then V 6= O in which case r
′TV r

′′ 6= 0 w.p. 1
4 as r

′
and r

′′
are chosen independently.

Remark : after step 2, verifier is convinced that w = u⊗ u w.h.p. using O(1) reads of π.

28.4 A detour into Fourier analysis

Notational Switch: In the boolean world we were operating over F2 with variables taking boolean values 0,1. In
the real world 0 is mapped to 1, 1 is mapped to -1 and + over F2 is mapped to multiplication i.e. if v1, v2 &v3 are
boolean vectors s.t. v1 + v2 = v3, where + is coordinate wise addition over F2, then after the notational switch
(0→ 1, 1→ −1), v1 o v2 = v3 where o is coordinate wise multiplication over reals.

Definition 28.7. Linear Functions on q-length strings: A function f : {−1, 1}q → {−1, 1} is said to be linear
function iff ∀x, y ∈ {−1, 1}q

f(x o y) = f(x)f(y)
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Definition 28.8. Equivalent definition of a linear function on q -length strings: A function f : {−1, 1}q → {−1, 1}
if ∃S ⊆ [q] s.t. for every x ∈ {−1, 1}q

f =
∏
i∈S

xi =: XS (where xi is the ith coordinate of x)

Definition 28.9. Nice Inner Product: Let f and g be two real valued function i.e. f : {−1, 1}q → R, g : {−1, 1}q →
R. Define an inner product of f and g, denoted by < f, g >, as

< f, g > =
1

2q

∑
x∈{−1,1}q

f(x)g(x) = Ex [f(x)g(x)]

Remark: Treating f and g as 2q-dimensional vector in R2q , the operation < f, g > defines an inner product.
Properties of Inner Product : Let v1 and v2 ∈ R2q , β ∈ R then

• < β.v1, v2 >= β. < v1, v2 >=< v1, β.v2 >

• < v1 + v2, v3 >=< v1, v3 > + < v2, v3 >

• < v1, v2 + v3 >=< v1 + v2 > + < v1 + v3 >

• < v1, v2 >=< v2, v1 >

• < v1, v1 >= 0 iff v1 = 0

Lemma 28.10. If S, T ⊆ [q] and S 6= T then < XS ,XT >= 0.

Proof. Given XS =
∏
i∈S

xi, XT =
∏
j∈T

xj

< XS ,XT > = Ex [XS(x)XT (x)]

= Ex

 ∏
i∈SMT

xi
∏

j∈S∩T
x2j

 M is symmetric difference

= Ex

[ ∏
i∈SMT

xi

]
as x2j = 1

=
∏

i∈SMT
E [xi] as x′is are independent

= 0 E [xi] = 0

Lemma 28.11. If S ⊆ [q] then < XS ,XS >= 1.

Proof. Given XS =
∏
i∈S

xi, XT =
∏
j∈T

xj

< XS ,XS > = Ex [XS(x)XS(x)]

= Ex

[∏
i∈S

x2i

]
= Ex [1]
= 1
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Claim 28.12. Xφ, ...,X[q] is an orthonormal basis of the space R2q .

Proof. Follows from the above lemmas.

The above claim implies that any vector f ∈ R2q can be uniquely expressed as

f =
∑

αSXS
S⊆[q]

where αS ∈ R

Note: This expression is the fourier transform of f and αS are the fourier coefficients.

The analysis of BLR test will be done in the next lecture i.e. we will prove the following theorem.

Theorem 28.13. If Pr{BLR accepts f} ≥ 1− ε then f is (1− ε)−close to a linear function.
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