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29.1 Abstract

1. Linearity testing. BLR [Blum, Luby, and Rubinfeld] test

Setup: Given a black box implementing some boolean function.
Task: We need to check if underlying function( say f) is linear. We are only allowed to query the box at
points x ∈ {0, 1}n, whereby the box returns the value f(x).

Objective: To complete the task using constantly many queries to the box (ensuring high probability of
success)

(Recall) A function f : {0, 1}n → {0, 1} is (1 − ε)-close to a linear function g : {0, 1}n → {0, 1} if
Prx∈{0,1}{f(x) = g(x)} ≥ 1− ε

BLR test (one round)

1. Choose x ∈R {0, 1}n, y ∈R {0, 1}n independently.

2. Let z = x+ y. [addition is coordinatewise over F2]

3. Query f at x, y, z check if f(x) + f(y) = f(z)

4. If equality holds then accept, else reject.

To capture the closeness between two functions, we use a nice notational switch. From here on, the underlying
field is the field of reals.

Notational switch: 0→ 1 and 1→ −1
Now f, g : {1,−1}n → {1,−1}

We will identify a function f : {1,−1}n → R, naturally with a 2n−dimensional vector over R. Let f.g denote
the ”usual” dot product of f and g, when viewed as vectors in R2n

.

Let f, g : {1,−1}n → {1,−1} Then,
f.g = Number of coordinates where f and g agree - Number of coordinates f and g disagree.
⇒ f.g = Number of coordinates where f and g agree - (2n - Number of coordinates where f and g agree)
⇒ f.g = 2*(Number of coordinates where f and g agree) - 2n

Definition 29.1 (Inner product (〈f, g〉)) Let f : {1,−1}n → R, and g : {1,−1}n → R, then
〈f, g〉 = Ex∈R{1,−1}n [f(x)g(x)] = 1

2n f.g
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Fact: 〈f, g〉 defines an inner product space. i.e it satisfies axioms

1. 〈f, g〉 = 〈g, f〉

2. 〈αf, g〉 = α〈f, g〉 where α is a scalar in R

3. 〈h+ f, g〉 = 〈f, g〉+ 〈h, g〉

4. 〈f, g + h〉 = 〈f, g〉+ 〈f, h〉

5. 〈f, f〉 ≥ 0

6. 〈f, f〉 = 0⇔ f = 0

The product 〈f, g〉 = 1
2n f.g captures the correlation between f and g.

Denote the 2n Linear functions (after notational switch), by
χφ . . . χS . . . χ[n]. where χS(x) =

∏
i∈S xi, where xi denotes the ith coordinate of x.

Lemma 29.2 〈χS , χT 〉 = 1 if S = T
〈χS , χT 〉 = 0 if S 6= T where S, T ⊆ [n]

Corollary 29.3 χφ . . . χ[n] are linearly independent over R

Corollary 29.4 χφ . . . χ[n] form an orthonormal basis for R2n

Definition 29.5 (Fourier expansion) From above corollary any vector f : {1,−1}n → R has a unique
representation of the form f =

∑
S⊆[n] αSχS, where αS ∈ R. Such a representation is called the Fourier

expansion of f .

Remark: In a broader sense Fourier expansion, is representation of a vector over some other ”interesting”
basis.

Definition : Let f =
∑
S⊆[n] αSXS , the values {αS}S⊆[n] are the Fourier coefficients of f . We usually use

the notation : f =
∑
S⊆[n] f̂(S).XS , where f̂(S) = αS .

Lemma : < f, g > =
∑
S⊆[n] f̂(S)ĝ(S), where f, g : {1,−1}n → R

Proof : < f, g > = <
∑
S f̂(S).XS ,

∑
T ĝ(T ).XT > (apply distributive law)

=
∑
S,T f̂(S).ĝ(T ) < XS ,XT >

=
∑
S⊆[n] f̂(S).ĝ(S)

Corollary 3 : < f, f >=
∑
S⊆[n] f̂(S)2

Corollary 4 : Let f : {1,−1}n → {1,−1} Then < f, f >= 1, (by definition of inner product 〈., .〉). Hence,∑
S⊆[n] f̂(S)2 = 1 (known as Parseval’s equality)

BLR Test 2

It is an equivalent version of the actual BLR test after the notational switch. We will use this test for the
sake of analysis.
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1. Choose x ∈R {1,−1}n, y ∈R {1,−1}n independently.

2. Let z = x ◦ y, (where x ◦ y is the co-ordinate wise product).

3. Query f at x, y, z.

4. Check if f(x).f(y) = f(z) ≡ f(x).f(y).f(z) = 1 (as f takes +1,−1 values).

5. If f(x).f(y).f(z) = 1 then accept else reject.

We need to analyze the following quantity :

Prx,y∈R{1,−1}n{f(x).f(y).f(x ◦ y) = 1}

= Pr{ BLR test accepts }

Observation : Suppose f, g : {1,−1}n → {1,−1}, then

< f, g >= Ex∈R{1,−1}[f(x).g(x)]

= 1
2n [# of co-ordinates where f, g agree - # of co-ordinates where f, g disagree]

= 1
2n [f.g]

= fractions of co-ordinates where f, g agree - fractions of co-ordinates where f, g disagree

= 2∗(fractions of co-ordinates where f, g agree) - 1.

Observation : Let f : {1,−1}n → R and let f =
∑
S⊆[n] f̂(S).XS be the Fourier expansion of f .

Then < f,XS >= f̂(S) for every S ⊆ [n].

BLR Test Analysis

Outline : We will show that if Pr{BLR test accepts} is high, then f̂(S) is high for some S.

⇒ < f,XS > is high

⇒ f is close to XS .

Theorem : If Pr{ BLR test accepts f} ≥ (1− ε), then f is (1− ε) close to a linear function.

Proof : We define the following indicator variable :

ex,y = 1
2 + 1

2 .f(x).f(y).f(z), where z = x ◦ y.

Observe that ex,y = 1 if and only if BLR test accepts with x and y as the random vectors chosen in step 1.

Hence,Prx,y∈R{1,−1}n{ BLR test accepts f}

= Prx,y∈R{1,−1}n{exy = 1}

= Ex,y[exy]

= Ex,y
[

1
2 + 1

2 .f(x).f(y).f(z)
]

= 1
2 + 1

2 .Ex,y
[
f(x).f(y).f(z)

]
....(1).

Analysing E[f(x).f(y).f(x ◦ y)]

Let f =
∑
f̂(S).XS
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⇒ f(x) =
∑
S f̂(S).XS(x),

f(y) =
∑
T f̂(T ).XT (y), and

f(x ◦ y) =
∑
U f̂(U).XU (x ◦ y). Therefore,

f(x).f(y).f(x ◦ y) =
∑
S,T,U f̂(S).f̂(T ).f̂(U).XS(x).XT (y).XU (x ◦ y)

⇒ Ex,y[f(x).f(y).f(x ◦ y)]

=
∑
S,T,U f̂(S).f̂(T ).f̂(U)Ex,y[XS(x).XT (y).XU (x ◦ y)]

We know that :

XS(x) = Πi∈Sxi

XT (y) = Πj∈T yj

XU (x ◦ y) = Πk∈Uxkyk

⇒ XS(x).XT (y).XU (x ◦ y) = Πi∈S∆UxiΠj∈T∆Uyj

⇒ Ex,y
[
XS(x).XT (y).XU (x◦ y)

]
= E

[
Πi∈S∆Uxi

]
.E
[
Πj∈T∆Uyj

]
(as x and y are chosen independently).

⇒ Ex,y
[
XS(x).XT (y).XU (x ◦ y)

]
= Πi∈S∆UE

[
xi
]
.Πj∈T∆UE

[
yj
]

⇒ Ex,y
[
XS(x).XT (y).XU (x ◦ y)

]
= 0 if S∆U 6= φ or T∆U 6= φ

⇒ Ex,y[f(x).f(y).f(z)] =
∑
S⊆[n] f̂(S)3

By the assumption made in the theorem statement :

1
2 + 1

2

∑
S⊆[n] f̂(S)3 ≥ (1− ε)

⇒
∑
S⊆[n] f̂(S)3 ≥ (1− 2ε).

Observe that
∑
S⊆[n] f̂(S)3

∑
S⊆[n] f̂(S)2.f̂(S) ≤ maxS{f̂(S)}.

∑
S⊆[n] f̂(S)2

Since,
∑
S⊆[n] f̂(S)2 = 1∑

S⊆[n] f̂(S)2.f̂(S) ≤ maxS{f̂(S)}

⇒ there is fourier coefficient, say f̂(w), such that

f̂(w) ≥ 1− 2ε

⇒ < f,Xw >≥ 1− 2ε

⇒ 2[fraction of co-ordinates where f and Xw agree]−1 ≥ 1− 2ε

⇒ fraction of co-ordinates where f and Xw agree ≥ 1− ε.
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