E0 224 Computational Complexity Theory		Fall 2014
	Lecture 29: November 24	
Lecturer: Chandan Saha	Scribe: Datta Krupa R, Sachin Kumar Srivastava	, Mohd Aqil

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

29.1 Abstract

1. Linearity testing. BLR [Blum, Luby, and Rubinfeld] test

Setup: Given a black box implementing some boolean function.

Task: We need to check if underlying function(say f) is linear. We are only allowed to query the box at points $x \in \{0,1\}^n$, whereby the box returns the value f(x).

Objective: To complete the task using constantly many queries to the box (ensuring high probability of success)

(**Recall**) A function $f : \{0,1\}^n \to \{0,1\}$ is $(1-\epsilon)$ -close to a linear function $g : \{0,1\}^n \to \{0,1\}$ if $Pr_{x \in \{0,1\}} \{f(x) = g(x)\} \ge 1-\epsilon$

BLR test (one round)

- 1. Choose $x \in_R \{0,1\}^n, y \in_R \{0,1\}^n$ independently.
- 2. Let z = x + y. [addition is coordinatewise over F_2]
- 3. Query f at x, y, z check if f(x) + f(y) = f(z)
- 4. If equality holds then accept, else reject.

To capture the closeness between two functions, we use a nice notational switch. From here on, the underlying field is the field of reals.

Notational switch: $0 \to 1 \text{ and } 1 \to -1$ Now $f, g: \{1, -1\}^n \to \{1, -1\}$

We will identify a function $f : \{1, -1\}^n \to \mathbb{R}$, naturally with a 2^n -dimensional vector over \mathbb{R} . Let f.g denote the "usual" dot product of f and g, when viewed as vectors in \mathbb{R}^{2^n} .

Let $f, g : \{1, -1\}^n \to \{1, -1\}$ Then, f.g = Number of coordinates where f and g agree - Number of coordinates f and g disagree. $\Rightarrow f.g =$ Number of coordinates where f and g agree - $(2^n$ - Number of coordinates where f and g agree) $\Rightarrow f.g = 2^*$ (Number of coordinates where f and g agree) - 2^n

Definition 29.1 (Inner product $(\langle f, g \rangle)$) Let $f : \{1, -1\}^n \to R$, and $g : \{1, -1\}^n \to R$, then $\langle f, g \rangle = E_{x \in_R \{1, -1\}^n}[f(x)g(x)] = \frac{1}{2^n}f.g$

Fact: $\langle f, g \rangle$ defines an inner product space. i.e it satisfies axioms

- 1. $\langle f, g \rangle = \langle g, f \rangle$
- 2. $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$ where α is a scalar in R
- 3. $\langle h+f,g\rangle = \langle f,g\rangle + \langle h,g\rangle$
- 4. $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$
- 5. $\langle f, f \rangle \ge 0$
- 6. $\langle f, f \rangle = 0 \Leftrightarrow f = 0$

The product $\langle f,g \rangle = \frac{1}{2^n} f.g$ captures the correlation between f and g. Denote the 2^n Linear functions (after notational switch), by $\chi_{\phi} \dots \chi_S \dots \chi_{[n]}$. where $\chi_S(x) = \prod_{i \in S} x_i$, where x_i denotes the ith coordinate of x.

Lemma 29.2 $\langle \chi_S, \chi_T \rangle = 1$ if S = T $\langle \chi_S, \chi_T \rangle = 0$ if $S \neq T$ where $S, T \subseteq [n]$

Corollary 29.3 $\chi_{\phi} \dots \chi_{[n]}$ are linearly independent over R

Corollary 29.4 $\chi_{\phi} \dots \chi_{[n]}$ form an orthonormal basis for \mathbb{R}^{2^n}

Definition 29.5 (Fourier expansion) From above corollary any vector $f : \{1, -1\}^n \to R$ has a unique representation of the form $f = \sum_{S \subseteq [n]} \alpha_S \chi_S$, where $\alpha_S \in R$. Such a representation is called the Fourier expansion of f.

Remark: In a broader sense Fourier expansion, is representation of a vector over some other "interesting" basis.

Definition : Let $f = \sum_{S \subseteq [n]} \alpha_S \mathcal{X}_S$, the values $\{\alpha_S\}_{S \subseteq [n]}$ are the Fourier coefficients of f. We usually use the notation : $f = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \mathcal{X}_S$, where $\hat{f}(S) = \alpha_S$.

 $\textbf{Lemma}: \ < f,g> = \ \textstyle \sum_{S\subseteq [n]} \widehat{f}(S) \widehat{g}(S), \ \text{where} \ f,g: \{1,-1\}^n \rightarrow R$

 $\begin{aligned} \mathbf{Proof}: &< f, g > = < \sum_{S} \hat{f}(S) . \mathcal{X}_{S}, \sum_{T} \hat{g}(T) . \mathcal{X}_{T} > \\ &= \sum_{S,T} \hat{f}(S) . \hat{g}(T) < \mathcal{X}_{S}, \mathcal{X}_{T} > \\ &= \sum_{S \subseteq [n]} \hat{f}(S) . \hat{g}(S) \end{aligned}$ (apply distributive law)

Corollary 3 : $\langle f, f \rangle = \sum_{S \subset [n]} \hat{f}(S)^2$

Corollary 4 : Let $f : \{1, -1\}^n \to \{1, -1\}$ Then $\langle f, f \rangle = 1$, (by definition of inner product $\langle ., . \rangle$). Hence,

$$\sum_{S \subseteq [n]} \hat{f}(S)^2 = 1$$
 (known as Parseval's equality)

BLR Test 2

It is an equivalent version of the actual BLR test after the notational switch. We will use this test for the sake of analysis.

- 1. Choose $x \in_R \{1, -1\}^n, y \in_R \{1, -1\}^n$ independently.
- 2. Let $z = x \circ y$, (where $x \circ y$ is the co-ordinate wise product).
- 3. Query f at x, y, z.
- 4. Check if $f(x) \cdot f(y) = f(z) \equiv f(x) \cdot f(y) \cdot f(z) = 1$ (as f takes +1, -1 values).
- 5. If f(x).f(y).f(z) = 1 then accept else reject.

We need to analyze the following quantity :

$$Pr_{x,y\in_R\{1,-1\}^n}\{f(x).f(y).f(x\circ y)=1\}$$

 $= Pr\{$ BLR test accepts $\}$

Observation : Suppose $f, g : \{1, -1\}^n \to \{1, -1\}$, then

- $< f,g >= E_{x \in_R \{1,-1\}}[f(x).g(x)]$ = $\frac{1}{2^n}[\#$ of co-ordinates where f,g agree - # of co-ordinates where f,g disagree] = $\frac{1}{2^n}[f.g]$
- = fractions of co-ordinates where f, g agree fractions of co-ordinates where f, g disagree

= 2*(fractions of co-ordinates where f, g agree) - 1.

Observation : Let $f : \{1, -1\}^n \to \mathbb{R}$ and let $f = \sum_{S \subseteq [n]} \hat{f}(S) \mathcal{X}_S$ be the Fourier expansion of f.

Then $\langle f, \mathcal{X}_S \rangle = \hat{f}(S)$ for every $S \subseteq [n]$.

BLR Test Analysis

<u>Outline</u>: We will show that if $Pr\{BLR \text{ test accepts}\}$ is high, then $\hat{f}(S)$ is high for some S.

- $\Rightarrow \langle f, \mathcal{X}_S \rangle$ is high
- $\Rightarrow f$ is close to \mathcal{X}_S .

Theorem : If $Pr\{$ BLR test accepts $f\} \ge (1 - \epsilon)$, then f is $(1 - \epsilon)$ close to a linear function.

Proof : We define the following indicator variable :

$$e_{x,y} = \frac{1}{2} + \frac{1}{2} \cdot f(x) \cdot f(y) \cdot f(z)$$
, where $z = x \circ y$.

Observe that $e_{x,y} = 1$ if and only if BLR test accepts with x and y as the random vectors chosen in step 1.

Hence,
$$Pr_{x,y \in R\{1,-1\}^n} \{$$
 BLR test accepts $f \}$

$$= Pr_{x,y \in R\{1,-1\}^n} \{ e_{xy} = 1 \}$$

$$= E_{x,y} [e_{xy}]$$

$$= E_{x,y} [\frac{1}{2} + \frac{1}{2} \cdot f(x) \cdot f(y) \cdot f(z)]$$

$$= \frac{1}{2} + \frac{1}{2} \cdot E_{x,y} [f(x) \cdot f(y) \cdot f(z)] \qquad \dots (1).$$
Analysing $E[f(x) \cdot f(y) \cdot f(x \circ y)]$
Let $f = \sum \hat{f}(S) \cdot \mathcal{X}_S$

$$\Rightarrow f(x) = \sum_{S} \hat{f}(S).\mathcal{X}_{S}(x),$$

$$f(y) = \sum_{T} \hat{f}(T).\mathcal{X}_{T}(y), \text{ and}$$

$$f(x \circ y) = \sum_{U} \hat{f}(U).\mathcal{X}_{U}(x \circ y). \text{ Therefore},$$

$$f(x).f(y).f(x \circ y) = \sum_{S,T,U} \hat{f}(S).\hat{f}(T).\hat{f}(U).\mathcal{X}_{S}(x).\mathcal{X}_{T}(y).\mathcal{X}_{U}(x \circ y)$$

$$\Rightarrow E_{x,y}[f(x).f(y).f(x \circ y)]$$

$$= \sum_{S,T,U} \hat{f}(S).\hat{f}(T).\hat{f}(U)E_{x,y}[\mathcal{X}_{S}(x).\mathcal{X}_{T}(y).\mathcal{X}_{U}(x \circ y)]$$

We know that :

By

$$\begin{split} \mathcal{X}_{S}(x) &= \Pi_{i \in S} x_{i} \\ \mathcal{X}_{T}(y) &= \Pi_{j \in T} y_{j} \\ \mathcal{X}_{U}(x \circ y) &= \Pi_{k \in U} x_{k} y_{k} \\ \Rightarrow & \mathcal{X}_{S}(x).\mathcal{X}_{T}(y).\mathcal{X}_{U}(x \circ y) = \Pi_{i \in S \Delta U} x_{i} \Pi_{j \in T \Delta U} y_{j} \\ \Rightarrow & E_{x,y} [\mathcal{X}_{S}(x).\mathcal{X}_{T}(y).\mathcal{X}_{U}(x \circ y)] = E [\Pi_{i \in S \Delta U} x_{i}].E [\Pi_{j \in T \Delta U} y_{j}] \text{ (as } x \text{ and } y \text{ are chosen independently).} \\ \Rightarrow & E_{x,y} [\mathcal{X}_{S}(x).\mathcal{X}_{T}(y).\mathcal{X}_{U}(x \circ y)] = \Pi_{i \in S \Delta U} E [x_{i}].\Pi_{j \in T \Delta U} E [y_{j}] \\ \Rightarrow & E_{x,y} [\mathcal{X}_{S}(x).\mathcal{X}_{T}(y).\mathcal{X}_{U}(x \circ y)] = 0 \quad \text{if } S \Delta U \neq \phi \text{ or } T \Delta U \neq \phi \\ \Rightarrow & E_{x,y} [f(x).f(y).f(z)] = \sum_{S \subseteq [n]} \hat{f}(S)^{3} \\ \text{the assumption made in the theorem statement :} \end{split}$$

$$\frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3 \ge (1 - \epsilon)$$

$$\Rightarrow \sum_{S \subseteq [n]} \hat{f}(S)^3 \ge (1 - 2\epsilon).$$
Observe that $\sum_{S \subseteq [n]} \hat{f}(S)^3 \sum_{S \subseteq [n]} \hat{f}(S)^2 \cdot \hat{f}(S) \le \max_S \{\hat{f}(S)\} \cdot \sum_{S \subseteq [n]} \hat{f}(S)^2$

Since, $\sum_{S \subseteq [n]} \hat{f}(S)^2 = 1$

$$\sum_{S \subseteq [n]} \hat{f}(S)^2 \cdot \hat{f}(S) \le \max_S \{\hat{f}(S)\}$$

 \Rightarrow there is fourier coefficient, say $\hat{f}(w)$, such that

$$\hat{f}(w) \ge 1 - 2\epsilon$$

$$\Rightarrow \langle f, \mathcal{X}_w \rangle \geq 1 - 2\epsilon$$

 \Rightarrow 2[fraction of co-ordinates where f and \mathcal{X}_w agree] $-1 \ge 1 - 2\epsilon$

 \Rightarrow fraction of co-ordinates where f and \mathcal{X}_w agree $\geq 1 - \epsilon$.

References

- [AB09] Sanjeev Arora and Boaz Barak, 2009. Computational Complexity: A Modern Approach, Cambridge University Press.
- [RD07] Lecture notes 2 and 3 from "Analysis of Boolean Functions" by Ryan O'Donnell http://www.

cs.cmu.edu/~odonnell/boolean-analysis/