
E0 224: Computational Complexity Theory

Lecturer: Chandan Saha Lecture #3
Scribe: Mohd Aqil 13-Aug-2014

1 The Halting Problem

The halting problem takes as input strings α and x and decides if the turing machine Mα

represented by α halts on input x within a finite number of steps.In other words given a
computer program and an input , can we determine whether the program is going to enter
an infinite loop on the input. More formally we define the language LHALT as follows:

LHALT := {(α,w) : Mα halts on input w }
Claim: LHALT is undecidable
Proof:Suppose for the sake of contradiction there exists a TM M that decides LHALT .

We will then show that this implies there is TM M’ that decides LUC thus contradicting
our earlier theorem where LUC := {α ∈ {0, 1}∗;Mα(α) = 0 or Mα does not halt}

M’ first calls M as a subroutine with input (α, α).If M ouputs 0 this means that TM
represented by α does not halt when given its own string as input so M’ outputs 1. If
M outputs 1 this means that the TM represented by α halts when given its own string
as input.Then M’ calls universal TM as a subroutine to simulate Mα on input α . If the
universal TM outputs 0 then M’ outputs 1 otherwise M’ ouputs 0.

2 Complexity Classes

A Complexity Class is a set of functions computable by turing machines under some resource
constraints such as Time, Space , Randomness(measured as the amount of random bits
needed for computation) or Communication.

To define complexity classes we will be mainly interested in the computation of boolean
functions i.e. functions that produce a single bit as their output.Such functions can also
be seen as representing decision problems or languages.Let f : {0, 1}∗ → {0, 1} denote the
boolean function,then the language represented by this function is Lf = {x ∈ {0, 1}∗ :
f(x) = 1}

2.1 Class DTIME

Let T : N→ N be some function.We say that a language L is in DTIME(T(n)) if there is a
deterministic turing machine M such that for every x ∈ {0, 1}∗ M(x) halts in time c.T (‖x‖)
(where c > 0 is some constant depending on M) and M(x) = 1 iff L(x) = 1. Thus class
DTIME(T(n)) represents the class of functions that are computable in time c.T(n) where
n is the input length.

2.2 Class P

The class P is defined as follows:

P := ∪c≥1DTIME(nc) (1)

This class denotes the set of all functions that can be computed in polynomial time.The
constant c ≥ 1 implies that we have to read the entire input string at least once which is
essential if for any possible input we need to compute the exact answer.

Following are some examples of natural problems in P:

• Graph Connectivity

• Cycle Detection

• Linear Programming

• Primality Testing

• Shortest Path

The class of problems in P are considered to be tractable or efficiently computable. One
of the motivating reasons for this is the Strong Church-Turing hypothesis which states that
Turing Machine can simulate any physical model of computation with just a polynomial
time overhead.This implies that the class of problems defined by P is invariant to the model
of the computation.

While defining the class P we have restricted our attention to boolean functions,if we
remove this restriction and consider arbitrary functions f : {0, 1}∗ → {0, 1}∗ that can be
computed in polynomial time then the set of these functions defines a new class called
Functional Polynomial Time(FPC).

2.3 Class NP

Informally the class NP denotes the set of all problems whose solution can be efficiently
verified.Formally we say that a language L ⊂ {0, 1}∗ is in NP if there exists a deterministic
polynomial time turing machine M and a polynomial function q : N → N such that x ∈ L
iff ∃u ∈ {0, 1}q(‖x‖) such that M(x,u) = 1. M is called the verifier for L and u is called the
certificate / witness for x. Following are examples of some natural problems in NP:

• Vertex Cover: Given a graph G and an integer k whether the graph G has vertex
cover of size k.Here the certificate is the set of k vertices and given such a set it can
be verified in polynomial time whether it forms a vertex cover or not.

• Independent Set:Given a graph G and a number k, find if there exists a k size in-
dependent subset of G’s vertices.By independent we mean no two vertices in subset
should have an edge between them.Here the certificate is the set of k vertices and it
can be easily verified in polynomial time whether they form an independent set or
not.

• Linear Programming:Given a list of m linear inequalities over n variables with rational
coefficients, decide if there is an assignment of variables in rationals that satisfies the
inequalities. The certificate is the assignment.

• Integer Linear Programming:Given a list of m linear inequalities over n variables
with rational coefficients decide if there is an assignment of variables in integers that
satisfies the inequalities.The certificate is the assignment.

2

• Graph Isomorphism:Given two graphs G1 and G2 such that |V (G1)| = |V (G2)| decide
if there exists a permutation σ : V (G1)→ V (G2) such that G2 = σ(G1).The certificate
is the permutation and once the permutation is given we can verify in polynomial time
whether the graphs are same under the given permutation

• Factoring: Given three numbers N, L, U determine whether N has a factor M between
L and U.The certificate is the factor M and one can easily check in ploy nodal time
whether M divides N or not.

3

