
Lecture 4

August 18, 2014

1 NP-Completeness

Definition 1.1. Polynomial-time reduction: A language L ⊂ {0, 1}∗ is said to

be polynomial time reducible to another language L′ if there exists a polynomial-

time computable function f : {0, 1}∗ → {0, 1}∗ such that x ∈ L ⇐⇒ f(x) ∈ L′.

If the language L is reducible to L′ then for every given string x we can simply

check if f(x) ∈ L′ and conclude if x ∈ L. Time taken for this is sum of time

taken to solve the problem in L′ and a polynomial time for computing f(x).

Definition 1.2. NP-hardness: A language LH is said to be NP-hard if for every

language L ∈ NP , L ≤p LH .

If an NP-hard problem can be solved in a certain amount of time, then every

problem in NP can be solved in the same amount of time with just an additional

polynomial factor.

Definition 1.3. NP-completeness: A language LC is said to be NP-complete

if LC ∈ NP and LC is NP-hard.

Hence NP-complete problems are the hardest among all problems in NP. Exis-

tence of such problems is not guaranteed by the definition. Here is an example

to show they exist.

Example 1.4. Define Lc := {< α, x, 1n, 1t >: ∃u ∈ {0, 1}n such that Mα

accepts < x, u > in exactly t steps}.

Proof. Claim 1: Lc ∈ NP
Consider a Turing Machine Mv. It accepts as input {< α, x, 1n, 1t >, u}. On

accepting input, it first checks if |u| = n. It then simulates the turing machine

Mα(x, u) for atmost t steps. If the simulation outputs 1, it means that the

specific input is a part of the language Lc.

Thus u the certificate for input x on Mα, also acts as a certificate for the input

< α, x, 1n, 1t > to decide if it is in Lc. Also the first part of Mv takes n steps to

1

complete and the second part of Mv runs for atmost t steps. Thus the running

time of Mv is Ω(n + t). Hence Mv is a deterministic polynomial-time verifier

for Lc. Hence Lc ∈ NP .

Claim 2: Lc ∈ NP-Hard

We need to show that every language L ∈ NP is polynomial-time reducible to

Lc.

Since L ∈ NP , we know that it has a polynomial-time verifier ML. Let ML

have the binary representation αL. Also there exists a certificate Ux for every

input x. Further we know that ML(x, ux) runs in time polynomial of the size of

the input. Let the time taken to run be p(|x|). Hence the size of ux must also

be polynomial in |x|. Let it be q(|x|).
Now, consider the reduction

f : x→< ML, x, 1
q(|x|), 1p(|x|+q(|x|)) >

By the construction above, x ∈ L ⇐⇒ < ML, x, 1
q(|x|), 1p(|x|+q(|x|)) >∈ Lc.

Hence every language in NP is poly-time reducible to Lc. So Lc ∈ NP-Hard.

Thus Lc is NP-complete.

The above example is a specifically constructed one and is not an organic ex-

ample. We shall see some more natural examples in the next section.

2 Satisfiability problem

Definition 2.1. The language SAT is defined as SAT = {φ : ∃x ∈ {0, 1}∗ such

that φ(x) = 1}.

Claim 1. SAT ∈ NP

Claim 2. SAT ∈ NP-complete

Definition 2.2. The language CNF-SAT is defined as CNF-SAT= {φ : φ is

represented in the conjunctive normal form and φ is satisfiable}.

Note: We say that φ is in conjunctive normal form if:

φ = c1 ∩ c2 ∩ . . . ∩ cm
ci = xi1

∨
xi2

∨
. . .

∨
xik

Definition 2.3. The language 3-SAT is defined as CNF − SAT = {φ : φ is

represented as a 3-CNF and φ is satisfiable}.

Claim 3. 3-SAT is NP-complete

2

Proof. Assume CNF-SAT is NP-Complete.

A certificate for 3-SAT, or any satisfiability problem in general, is the satisfy-

ing assignment to the literals. Given an assignment, it can be checked in time

proportional to the size of the boolean formula if it satisfies the formula or not.

Hence 3-SAT is in NP.

Now we reduce the CNF-SAT problem to 3-SAT problem.

Consider any boolean formula in the conjunctive normal form. So φ = c1 ∩ c2 ∩
. . . ∩ cm and ci = xi1

∨
xi2

∨
. . .

∨
xik.

Let ci1 = xi1
∨
xi2

∨
. . .

∨
xi(k−2)

∨
zi and

ci2 = xi(k−1)
∨
xik

∨
z̄i

Now if ci has a solution, then one of the xij must be 1. Setting the zi term in

the same clause to 0, both the clauses will be satisfied. Also if the clause is not

satisfiable, then all the xij must be 0 and zi terms prevent both formulas from

being satisfied simultaneously. Hence ci is satisfiable if and only if ci1
∨
ci2 is

satisfiable.

We can proceed inductively to reduce the clause to a conjunction of clauses with

at most 3 literals. Proceeding similarly the entire formula φ can be written in

the 3-CNF form. In each of the new clauses, by construction, at least one of the

original n literals exists. Thus the new number of clauses is at most n×max(ki).

The new formula can be computed in as much time as well.

Hence the above reduction is a deterministic poly-time reduction of CNF-SAT

to 3-SAT. Hence 3-SAT is NP-Complete.

Note: It is interesting to note that by the above construction we cannot reduce

the formula to 2-CNF form. The above iterative step will then remove one

variable and create a new variable. The process will hence not terminate.

It would also be a good time to find polynomial time algorithm to solve 2-SAT.

Theorem 2.4 (Cook-Levin). CNF-SAT is NP-Complete

Proof. As was stated before, the satisfying assignment serves a certificate for

any given input and hence CNF-SAT is in NP.

Let L ∈ NP . We need to show that there exists a polynomial-time reduction

from L to CNF-SAT.

By the definition of NP, there is a polynomial time verifier ML and a certificate

of polynomial length, q(|x|) such that x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x|)&ML(<

x, u >) = 1. We also know that ML runs in polynomial time. Let it run in time

p(|x|).
Consider the simulation of the turing machine ML. Let it have a bit represen-

tation as:

3

x1 x2 . . . x|x| u1 u2 . . . uq(|x|) . . . p(|x|) . . .

Since the running time of ML is p(|x|), the head never goes beyond the cell

p(|x|) and we need not consider the tape beyond it.

Now consider expanding each cell in the tape above to contain three parts:

• First part contains the same bit as before

• Second part stores a 1 if the head of the machine is at the current state

and 0 otherwise

• Third part stores the state of the machine if the head is in that state or a

redundant state otherwise.

The bit-size of each cell still remains a constant. Now we look at the screenshot

of the tape after each computation made by the machine. The machine can

make at most p(|x|) computations. So we look at all the p(|x|) versions of the

tape. We initialize the first tape with the values of xi and ui in their respective

places and for every other bit in the first tape and every bit on every other tape

we create new boolean variables zi. Also, we assume that there is a certain

output bit on the p(|x|)th screenshot of the tape that contains 1 if the string is

accepted and zero otherwise.

x1 z12 z13 . . . u1 z1j z1(j+1) . . . z1p(|x|)

z21 z22 z23 . . . z2(j−1) z2j z1(j+1) . . . z2p(|x|)
...

...
...

. . .
...

...
...

. . .
...

o/p zp(|x|)2 zp(|x|)p(|x|)

By the property of the turing machines, the head can move only one cell to

the right or left in each step. The variable in the first compartment can be

altered only if the head of the TM is on that cell and depends only on the state

the TM is in. The head can move to a cell only if it is on an adjacent cell. The

state variable is redundant unless the head is on the cell and depends on the

state of the machine and the input being read. Hence the values of each cell in

the tape depends only on the values in the the cell itself and its two adjacent

cells in the previous time-step.

To obtain a 1 in the output cell, we need a certain configuration in the cor-

responding three cells. This relation can be easily expressed in the DNF form

which can be converted to the CNF form. Similarly for all the cells, the value is

constrained only by the three corresponding cells and these requirements can all

4

be represented as a boolean formula in the CNF form since they are all boolean

variables. These constraints are sufficient to ensure the machine is not violating

any of its properties.

If the machine does not accept an input < x, u >, then there cannot be a satis-

fying assignment of the boolean variables and if it accepts the input, then the

satisfying assignment is the contents of the tape as the turing machine executes.

The number of clauses in the CNF representation of the machine is less than

the number of boolean variables which is bounded by O(cp(|x|)2) which is poly-

nomial as well.

Hence the construction provides a polynomial time reduction from the language

L to CNF-SAT. Thus CNF-SAT is NP-Complete.

Note: By the above construction the time taken for the reduction is O(p2(|x|)).
There are more efficient reductions that take only O(p(|x|) log p(|x|) time.

Notes scribed by:

Sabareesh R

ugsabareesh@ug.iisc.in

5

