E0 224 Computational Complexity Theory Fall 2014 Indian Institute of Science, Bangalore Department of Computer Science and Automation

Lecture 5: Aug 20, 2014

Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in>

 $Scribe:\ Jaiprakash$

1. Reductions

Definition 1.

SAT (Boolean satisfiable) problem: SAT problem for a given Boolean formulae tries to answer, whether there exists a truth assignment making the Boolean formula true. In other words, can we assign the variables of a given Boolean formula such a way as to make the formula evaluate to true.

Cook-Levin Theorem: Cook-Levin Theorem states that SAT problem is NP-complete. So there exist a poly-

time computable function f s.t { $x \in L$ iff $f(x) = \phi_x$ is satisfiable}, where L is the language in NP i.e. $L \leq_p SAT$

Definition 2.

Levin-reduction: The above $L \leq_p SAT$ reduction not only satisfies $\{x \in L \text{ iff } \phi_x \text{ is satisfiable}\}$, but it also provides an efficient way of transforming a certificate for x to a satisfying assignment for ϕ_x and vice versa.

Observation 1.

It is easy (poly-time) to find a certificate for a x (where $x \in L$) from a satisfying assignment of ϕ_x . Such reductions are known as Levin reduction.

Observation 2.

There is a one-to-one onto map between certificates of x and certificates of ϕ_x .

Suppose u is a certificate of x

 $\Psi_x: u \longrightarrow (u, g(x, u)) \text{ and } u \longleftarrow (u, z)$

where, z is the snapshot of the Turing machine.

It provides a one-to-one and onto map between the set of certificates for x and the set of satisfying assignments

for ϕ_x , (So they are of same size)

Definition 3.

Parsimonious reductions: Reductions satisfying Observation 2 are known as Parsimonious reductions.

Cook-Levin(Restated): For every language $L \in NP$, there is a parsimonious reduction from L to SAT.

Definition 4.

Running Time of a TM: Let $T: N \to N$ and $f: \{0, 1\}^* \to \{0, 1\}^*$. We say that a TM M computes f in time T(n) iff on every input $x \in \{0, 1\}^*$, M(x) = f(x) and number of basic operations(number of times M applies a rule from the truth table) of M on input x is bounded by T(|x|).

Fact: ϕ_x is of size $O(T(|x|) \log T(|x|))$

2. Independent/Stable set

Definition 5.

Independent set of a graph G is a set of vertices of G such that no two of which are adjacent in G.

The problem of finding existence of independent set of size k can be formulated as

 $INDSET = \{ \langle G, k \rangle : \exists S \subseteq V(G) \text{ s.t. } |S| = k \text{ and } \forall u, v \in S, (u, v) \notin E(G) \}$

Theorem 1.

INDSET problem is NP-Complete

Proof. To show that INDSET problem is NP-Complete, we have to show INDSET is both NP and NP-Hard.

1. INDSET is NP.

Suppose somebody has given a certificate that contains a set of vertices, in polynomial time we can verify whether the number of vertices given in the certificate is equal to k and also verify whether two vertices are not adjacent.

2. INDSET is NP-Hard.

We will prove this by doing a polynomial time reduction from 3-SAT to INDSET (i.e 3-SAT \leq_p INDSET). Suppose ϕ is in 3-CNF. Our goal is to define poly time computable map

f: $\phi \longrightarrow f(\phi) = \langle G, k \rangle_{\phi}$ s.t $\phi \in 3$ -SAT iff $\langle G, k \rangle_{\phi} \in INDSET$

Let m be the number of clauses in ϕ . The graph G is defined as follows: we associate a cluster of 7 vertices in G with each clause of ϕ . The vertices in a cluster associated with a clause C, corresponds to the 7 possible satisfying partial assignments to the three variables on which C depends (If C depends on less than three variables, then we repeat one of the partial assignment). Inside a cluster we connect all pair of vertices and put an edge between two vertices of G if they correspond to inconsistent partial assignments. The below figure shows the transformation.

The transformation from ϕ to G can be done in polynomial time.

We are now showing that ϕ is satisfiable iff G has an independent set of size m.

Case 1: Suppose ϕ has a satisfying assignment u. We are going to define $S \subseteq G(V)$ of size m. For each clause C of ϕ , add a vertex in S that correspond to the restrictions of the assignment u to the variables C depends. Since

no two vertices of S correspond to inconsistent assignments. Hence S is an independent set of size m.

Case 2: Suppose G has an independent set of size m. We are going to define assignment u of ϕ . For every $i \in [n](n \text{ is the number of variables in } \phi)$, if there is a vertex in S, whose partial assignment gives a value a to u_i , then set $u_i = a$, otherwise $u_i = 0$. Since S is an independent set, each variable u_i can take at most one value. Since we put all the edges within each cluster, S can have at most a single vertex from each cluster. So |S| = m, implies S has exactly one vertex from every cluster which is the satisfying assignment. Hence it satisfies all of ϕ clauses.

Homework 1.

Prove or disprove that the above reduction is Parsimonious Reduction.

3. 0/1 Integer Programming

Definition 6.

0/1 IP is a mathematical feasibility(optimization) program in which variables can take only 0 or 1 values. **Input:** set of linear constraints with rational coefficients.

 $\mathbf{A}x \leq b \text{ s.t } x \in \{0,1\}$

Task: Check whether there is a 0/1 assignment to the x-variables s.t. all the given constraints are satisfied.

Theorem 2.

0/1 Integer Programming is NP-Complete.

Proof. To prove this we have to show,

1. 0/1 IP is NP.

If somebody gives a certificate that contains 0/1 assignment of variables, then we can verify whether provided certificate is satisfiable or not, in polynomial time.

2. 0/1 IP is NP-Hard.

We will prove this by doing a polynomial time reduction from 3-SAT to 0/1 IP (i.e 3-SAT $\leq_p 0/1$ IP). Let $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$, and let the variables in the 3-SAT formula be x_1, x_2, \ldots, x_n and their corresponding variables z_1, z_2, \ldots, z_n in our 0/1 IP.

For each clause $C_i(\text{e.g. } x_1 \lor x_2 \lor \neg x_3)$ we have a constraint (like: $z_1 + z_2 + (1 - z_3) \ge 1$). To satisfy this inequality we must set $z_1 = 1$ or $z_2 = 1$ or $z_3 = 0$, which means $x_1 = true$ or $x_2 = true$ or $x_3 = false$ in the corresponding truth assignment.

4. Remark on Factoring

FACT₁ := { $\langle N, L, U \rangle$: if there exist a number $\in [L, U]$ that divides N} The FACT₁ problem is NP-Complete.

FACT₂ := { $\langle N, L, U \rangle$: if there is a prime p in the interval [L, U] that divides N }

Note: We can factor a number using $O(\sqrt{N})$ trials division, but the representation of N have log N bits, hence it is an exponential time algorithm.

FACT₂ is in NP. The current best algorithm for FACT₂ runs in time $2^{O((\log N)^{(1/3)}(\log \log N)^{2/3})}$.

5. Subset Sum Problem

Definition 7.

Given a (multi)set X of integers and an integer k, does there exist a non-empty subset of X whose sum is k.

SUBSET-SUM= { $\langle X, k \rangle | X = \{x_1, x_2, ..., x_n\}$ and $\exists A \subseteq [n]$ s.t $\sum_{i \in A} x_i = k$ } **Input:** Given $X = \{x_1, x_2, ..., x_n\}$ and k**Task:** Check if $\exists A \subseteq [n]$ s.t $\sum_{i \in A} x_i = k$

Theorem 3.

SUBSET-SUM Problem is NP-complete.

Proof. To prove this we have to show,

1. SUBSET-SUM Problem is NP.

If somebody gives a certificate that contains a subset of X, then we can verify whether provided certificate is subset of X and sum up to k in polynomial time.

2. SUBSET-SUM Problem is NP-Hard.

We prove this by showing 3-SAT \leq_p SUBSET-SUM

- (a) Let we have l variables $\{v_1, ..., v_i, ..., v_l\}$ and m clauses $\{c_1, ..., c_j, ..., c_m\}$.
- (b) For each variables v_i create a number t_i and f_i of (l+m) digits.
 - i. The i^{th} digit of t_i and f_i is equal to 1.
 - ii. For all j
, $l+1 \leq j \leq l+m$
 - A. $t_{i,j} = 1$, if v_i is in clause c_{j-l} , 0 otherwise.
 - B. $f_{i,j} = 1$ if $\neg x_i$ is in clause c_{j-l} , 0 otherwise. Example:

			•	, , ,			
		i		j			
Number	1	2	3	1	2	3	4
t ₁	1	0	0	1	0	0	1
f ₁	1	0	0	0	1	1	0
t ₂	0	1	0	1	0	1	0
f ₂	0	1	0	0	1	0	1
t3	0	0	1	1	1	0	1
f3	0	0	1	0	0	1	0

 $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$

- (c) For each clause c_j , create x_j and y_j of length (l+m) and initialize it to 0.
 - i. assign $x_{j,l+j}$ and $y_{j,l+j}$ to 1.
- (d) Create sum s, of length (l+m)
 - i. For j, $1 \leq j \leq n$, $s_j = 1$
 - ii. For j, $l + 1 \le j \le l + m$, $s_j = 3$

	1			J			
Number	1	2	3	1	2	3	4
<i>x</i> ₁	0	0	0	1	0	0	0
<i>y</i> ₁	0	0	0	1	0	0	0
x2	0	0	0	0	1	0	0
<i>y</i> 2	0	0	0	0	1	0	0
x3	0	0	0	0	0	1	0
<i>y</i> 3	0	0	0	0	0	1	0
×4	0	0	0	0	0	0	1
<i>Y</i> 4	0	0	0	0	0	0	1

6. Cryptosystem Based on SUBSET-SUM Problem.

Merkle-Hellman is a public/asymmetric key encryption proposed by Ralph Merkle and Martin Hellman

in 1978.

Definition 8.

Public Key : It is made available to everyone via a publicly accessible repository or directory.

Definition 9.

Private Key : The Private Key must remain confidential to its respective owner.

Private Key :

- 1. A superincreasing sequence $e = \langle e_1, e_2, ..., e_n \rangle$ s.t. $\forall i \in n, e_i \rangle \sum_{j=1}^{i-1} e_j$
- 2. Pick a random integer m s.t $m > \sum_{i=1}^{n} e_i$.
- 3. A number w that is relatively prime to m. i.e $\exists w' \text{ s.t. } w' \cdot w \equiv 1 \mod m$.

Public Key :

A sequence of numbers (h_1, h_2, \dots, h_n) s.t. $h_i \equiv w \cdot e_i \mod m$

Encryption :

Let $X = (x_1, x_2, ..., x_n)$ is the plain(original) message which a user wants to send. It is a 0-1 string.

To encrypt n-bit message X, calculate Ciphertext $C = \sum_{i} h_i \cdot x_i$, which is the encrypted message and is send to the receiver.

Decryption

Receiver receives C. In order to decrypt a Ciphertext C, a receiver has to find the message bits x_i .

Receiver have $C = \sum_{i=1}^{n} h_i \cdot x_i$ $w' \cdot C \equiv \sum_{i=1^n} w' \cdot h_i \cdot x_i$ $\equiv \sum_i w' \cdot w \cdot e_i \cdot x_i \mod m$ [because $h_i \equiv w \cdot e_i \mod m$]

 $\equiv \sum_{i} e_i \cdot x_i \mod m$ [because $w' \cdot w \equiv 1 \mod m$]

 $=\sum_{i} e_i \cdot x_i$ [because of super-increasing sequence]

Receiver knows $\sum_{i=1}^{n} e_i \cdot x_i = D(say)$ using the private key. Now, this problem is in the same form of SUBSET-SUM Problem and it is easy to solve because X is a superincreasing sequence. If numbers in the set are superincreasing then the problem is solvable in polynomial time using simple greedy algorithm (Reference [3]).

- 1. Take largest element from e, let e_k
- 2. If $e_k > D$ then $x_k = 0$, otherwise $x_k = 1$.
- 3. Subtract $(x_k \cdot e_k)$ from D and remove e_k from e and continue to step-1, until you get X.

References

- S.ARORA and B.BARAK Computational Complexity: A Modern Approach, Cambridge University Press, 2009
- [2] Michael Sipser "Introduction to Theory of Computation", Cengage Learning
- [3] Shamir, Adi (1984). "A polynomial-time algorithm for breaking the basic Merkle Hellman cryptosystem". Information Theory, IEEE Transactions on 30 (5): 699704