
E0 224 Computational Complexity Theory Indian Institute of Science, Bangalore

Fall 2014 Department of Computer Science and Automation

Lecture 5: Aug 20, 2014

Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in> Scribe: Jaiprakash

1. Reductions

Definition 1.
SAT (Boolean satisfiable) problem: SAT problem for a given Boolean formulae tries to answer, whether
there exists a truth assignment making the Boolean formula true. In other words, can we assign the variables of
a given Boolean formula such a way as to make the formula evaluate to true.

Cook-Levin Theorem: Cook-Levin Theorem states that SAT problem is NP-complete. So there exist a poly-

time computable function f s.t {x ∈ L iff f(x) = φx is satisfiable}, where L is the language in NP i.e. L ≤p SAT

Definition 2.
Levin-reduction: The above L ≤p SAT reduction not only satisfies {x ∈ L iff φx is satisfiable}, but it also
provides an efficient way of transforming a certificate for x to a satisfying assignment for φx and vice versa.

Observation 1.
It is easy (poly-time) to find a certificate for a x (where x ∈ L) from a satisfying assignment of φx. Such reductions
are known as Levin reduction.

Observation 2.
There is a one-to-one onto map between certificates of x and certificates of φx.

Suppose u is a certificate of x

Ψx : u −→ (u, g(x, u)) and u←− (u, z)

where, z is the snapshot of the Turing machine.

It provides a one-to-one and onto map between the set of certificates for x and the set of satisfying assignments

for φx, (So they are of same size)

Definition 3.
Parsimonious reductions: Reductions satisfying Observation 2 are known as Parsimonious reductions.

Cook-Levin(Restated): For every language L ∈ NP , there is a parsimonious reduction from L to SAT.

1

Lecture 5

Definition 4.
Running Time of a TM: Let T : N → N and f : {0, 1}∗ → {0, 1}∗. We say that a TM M computes f in time
T (n) iff on every input x ∈ {0, 1}∗, M(x) = f(x) and number of basic operations(number of times M applies a
rule from the truth table) of M on input x is bounded by T (|x|) .

Fact: φx is of size O(T (|x|) log T (|x|))

2. Independent/Stable set

Definition 5.
Independent set of a graph G is a set of vertices of G such that no two of which are adjacent in G.

The problem of finding existence of independent set of size k can be formulated as

INDSET = {< G, k >: ∃ S ⊆ V (G) s.t. |S| = k and ∀u, v ∈ S, (u, v) /∈ E(G)}

Theorem 1.
INDSET problem is NP-Complete

Proof. To show that INDSET problem is NP-Complete, we have to show INDSET is both NP and NP-Hard.

1. INDSET is NP.

Suppose somebody has given a certificate that contains a set of vertices, in polynomial time we can verify

whether the number of vertices given in the certificate is equal to k and also verify whether two vertices

are not adjacent.

2. INDSET is NP-Hard.

We will prove this by doing a polynomial time reduction from 3-SAT to INDSET(i.e 3-SAT ≤p INDSET).

Suppose φ is in 3-CNF. Our goal is to define poly time computable map

f: φ −→ f(φ) =< G, k >φ s.t φ ∈ 3-SAT iff < G, k >φ∈ INDSET

Let m be the number of clauses in φ. The graph G is defined as follows: we associate a cluster of 7 vertices

in G with each clause of φ. The vertices in a cluster associated with a clause C, corresponds to the 7 possible

satisfying partial assignments to the three variables on which C depends (If C depends on less than three

variables, then we repeat one of the partial assignment).Inside a cluster we connect all pair of vertices and

put an edge between two vertices of G if they correspond to inconsistent partial assignments. The below

figure shows the transformation.

The transformation from φ to G can be done in polynomial time.

We are now showing that φ is satisfiable iff G has an independent set of size m.

Case 1: Suppose φ has a satisfying assignment u. We are going to define S ⊆ G(V) of size m. For each clause C

of φ, add a vertex in S that correspond to the restrictions of the assignment u to the variables C depends. Since

2

Lecturer: Chandan Saha , Scribe: Jaiprakash

no two vertices of S correspond to inconsistent assignments. Hence S is an independent set of size m.

Case 2: Suppose G has an independent set of size m. We are going to define assignment u of φ. For every

i ∈ [n](n is the number of variables in φ), if there is a vertex in S, whose partial assignment gives a value a to

ui, then set ui = a, otherwise ui = 0. Since S is an independent set, each variable ui can take at most one value.

Since we put all the edges within each cluster, S can have at most a single vertex from each cluster. So |S| = m,

implies S has exactly one vertex from every cluster which is the satisfying assignment. Hence it satisfies all of φ

clauses.

Homework 1.
Prove or disprove that the above reduction is Parsimonious Reduction.

3

Lecture 5

3. 0/1 Integer Programming

Definition 6.
0/1 IP is a mathematical feasibility(optimization) program in which variables can take only 0 or 1 values.
Input: set of linear constraints with rational coefficients.

Ax ≤b s.t x ∈ {0,1}

Task: Check whether there is a 0/1 assignment to the x-variables s.t. all the given constraints are satisfied.

Theorem 2.
0/1 Integer Programming is NP-Complete.

Proof. To prove this we have to show,

1. 0/1 IP is NP.
If somebody gives a certificate that contains 0/1 assignment of variables, then we can verify whether
provided certificate is satisfiable or not, in polynomial time.

2. 0/1 IP is NP-Hard.
We will prove this by doing a polynomial time reduction from 3-SAT to 0/1 IP (i.e 3-SAT ≤p 0/1 IP).
Let φ = C1 ∧ C2 ∧ ∧ Cm , and let the variables in the 3-SAT formula be x1, x2,, xn and their
corresponding variables z1, z2,, zn in our 0/1 IP.
For each clause Ci(e.g. x1 ∨ x2 ∨ ¬x3) we have a constraint (like: z1 + z2 + (1 − z3) ≥ 1). To satisfy this
inequality we must set z1 = 1 or z2 = 1 or z3 = 0, which means x1 = true or x2 = true or x3 = false in
the corresponding truth assignment.

4. Remark on Factoring

FACT1 := {< N,L,U >: if there exist a number ∈ [L,U] that divides N}
The FACT1 problem is NP-Complete.

FACT2 := {< N,L,U >: if there is a prime p in the interval [L,U] that divides N }
Note: We can factor a number using O(

√
N) trials division, but the representation of N have logN bits, hence

it is an exponential time algorithm.

FACT2 is in NP. The current best algorithm for FACT2 runs in time 2O((logN)(1/3)(log logN)2/3).

5. Subset Sum Problem

Definition 7.
Given a (multi)set X of integers and an integer k, does there exist a non-empty subset of X whose sum is k.

SUBSET-SUM= {< X, k > |X = {x1, x2, ..., xn} and ∃ A ⊆ [n] s.t
∑
i∈A xi = k}

Input: Given X = {x1, x2,, xn} and k
Task: Check if ∃ A ⊆ [n] s.t

∑
i∈A xi = k

Theorem 3.
SUBSET-SUM Problem is NP-complete.

Proof. To prove this we have to show,

4

Lecturer: Chandan Saha , Scribe: Jaiprakash

1. SUBSET-SUM Problem is NP.
If somebody gives a certificate that contains a subset of X, then we can verify whether provided certificate
is subset of X and sum up to k in polynomial time.

2. SUBSET-SUM Problem is NP-Hard.
We prove this by showing 3-SAT ≤p SUBSET-SUM

(a) Let we have l variables {v1, .., vi, .., vl} and m clauses {c1, .., cj , .., cm}.
(b) For each variables vi create a number ti and fi of (l +m) digits.

i. The ith digit of ti and fi is equal to 1.

ii. For all j, l + 1 ≤ j ≤ l +m

A. ti,j = 1, if vi is in clause cj−l, 0 otherwise.

B. fi,j = 1 if ¬xi is in clause cj−l , 0 otherwise.

Example:

(c) For each clause cj , create xj and yj of length (l +m) and initialize it to 0.

i. assign xj,l+j and yj,l+j to 1.

(d) Create sum s, of length (l +m)

i. For j, 1 ≤ j ≤ n ,sj = 1

ii. For j, l + 1 ≤ j ≤ l +m ,sj = 3

6. Cryptosystem Based on SUBSET-SUM Problem.

Merkle-Hellman is a public/asymmetric key encryption proposed by Ralph Merkle and Martin Hellman

in 1978.

Definition 8.
Public Key : It is made available to everyone via a publicly accessible repository or directory.

Definition 9.
Private Key : The Private Key must remain confidential to its respective owner.

5

Lecture 5

Private Key :

1. A superincreasing sequence e =< e1, e2,, en > s.t. ∀i ∈ n, ei >
∑i−1
j=1 ej

2. Pick a random integer m s.t m >
∑n
i=1 ei.

3. A number w that is relatively prime to m. i.e ∃w′ s.t. w′ · w ≡ 1 mod m.

Public Key :

A sequence of numbers (h1, h2,, hn) s.t. hi ≡ w · ei mod m

Encryption :

Let X = (x1, x2,, xn) is the plain(original) message which a user wants to send. It is a 0-1 string.

To encrypt n-bit message X, calculate Ciphertext C =
∑
i hi · xi , which is the encrypted message and is send to

the receiver.

Decryption

Receiver receives C. In order to decrypt a Ciphertext C, a receiver has to find the message bits xi.

Receiver have C =
∑n
i=1 hi · xi

w′ · C ≡
∑
i=1n w

′ · hi · xi

≡
∑
i w
′ · w · ei · xi mod m [because hi ≡ w · ei mod m]

≡
∑
i ei · xi mod m [because w′ · w ≡ 1 mod m]

=
∑
i ei · xi [because of super-increasing sequence]

Receiver knows
∑n
i=1 ei.xi = D(say) using the private key. Now, this problem is in the same form of SUBSET-

SUM Problem and it is easy to solve because X is a superincreasing sequence. If numbers in the set are superin-

creasing then the problem is solvable in polynomial time using simple greedy algorithm (Reference [3]).

1. Take largest element from e, let ek

2. If ek > D then xk = 0, otherwise xk = 1.

3. Subtract (xk · ek) from D and remove ek from e and continue to step-1, until you get X.

References

[1] S.ARORA and B.BARAK Computational Complexity: A Modern Approach, Cambridge University Press,

2009

[2] Michael Sipser ”Introduction to Theory of Computation”, Cengage Learning

[3] Shamir, Adi (1984). ”A polynomial-time algorithm for breaking the basic Merkle - Hellman cryptosystem”.

Information Theory, IEEE Transactions on 30 (5): 699704

6

	Reductions
	Independent/Stable set
	0/1 Integer Programming
	Remark on Factoring
	Subset Sum Problem
	Cryptosystem Based on SUBSET-SUM Problem.
	References

