
E0 224 Computational Complexity Theory

Lecture 6

Lecturer: Chandan Saha Scribe: Sandip Sinha

August 25, 2014

1 Coping with NP-Completeness

NP-Complete problems appear in a wide variety of real-world applications. In some cases,

solving such a problem is necessary. Let us look at some methods to cope with NP-Completeness.

The main idea here is that, while the problem is difficult to solve exactly on every possible input,

it might be good enough in practice to solve the problem approximately and on some inputs.

1.1 Special cases might admit efficient algorithms

Although the problem, when specified in full generality, may be NP-hard, there may be special

cases for which it is possible to design efficient algorithms.

Example 1.1.1. 2-SAT ∈ P.

We know that CNF-SAT is NP-Complete. However, the special case of 2-SAT, in which each

clause has at most 2 literals, can be solved in deterministic polynomial-time.

Example 1.1.2. (2 + ε)-SAT is NP-hard.

This result was proved by Austrin, Guruswami and H̊astad in 2013. The precise statement of

the problem is given below.

Suppose we are given a ω-SAT instance (meaning every clause has atmost ω literals). We are

given the promise that there exists a satisfying assignment for φ that satisfies atleast
(
dω2 e − 1

)
literals in every clause.

Task: Find a satisfying assignment for φ.

Result: This problem is NP-hard.

However, the same problem becomes tractable (meaning it is in P) if
(
dω2 e − 1

)
is replaced by(

dω2 e
)
. It admits an efficient algorithm which is a generalisation of the algorithm for 2-SAT.

This result can be understood by taking ω = 3.

Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness -

Michael R. Garey, David S. Johnson.

1.2 Design of Approximation Algorithms

Example 1.2.1. TSP.

Problem: Given a graph G with n nodes and
(
n
2

)
weighted edges, find the minimum weight

1

Hamiltonian cycle in G.

This is NP-hard since the decision version of the problem is NP-Complete.

However, in practice, we might only require an algorithm that solves the problem in the case

when the n nodes are points on a plane, and the triangle inequality is satisfied. This version is

called the Euclidean TSP, which also turns out to be NP-hard.

Remark: If P 6= NP then TSP does not have an efficient constant factor approximation

algorithm.

Result (Arora ’96): For every ε > 0, there is a (1 + ε)-approximation algorithm for Euclidean

TSP with running time poly(n (log n)O(1/ε)).

Thus, if the restriction of Euclidean distance and the allowance of approximation separately

is not sufficient for tractability. However, if both are applied simultaneously, there exists an

efficient algorithm which is close to optimal.

Reference: The Design of Approximation Algorithms - David P. Williamson, David B. Shmoys.

1.3 Average case complexity: Levin’s theory

This method, due to Levin, is concerned with the design of algorithms that are efficient on a

distribution of inputs which are likely to arise in practice, rather than on all inputs. A natural

question at this point is: What is the class of distributions that arise in practice? Levin makes

a daring suggestion that we allow any distribution from which it is possible to draw samples

in polynomial-time (P-samplable distribution). He reasoned that real-life instances must be

produced by the actions of the world around us. If we believe in the strong form of the Church-

Turing thesis, then the world can be simulated on a TM, in which case we can assume that the

computation that produced the instance was efficient. We can therefore assume that the time

taken for the computation was polynomial in the instance size.

The formalization of real-life distributions can be done in two ways:

(i) Polynomial time computable (P-computable) distributions

(ii) Polynomial time samplable (P-samplable) distrbutions

Example 1.3.1. CLIQUE on random graphs.

Input instance: < G, k > where G is a random graph with n vertices (meaning each edge is

in the graph independently with probability 1
2), and k is a positive integer, k 6 n.

Fact: CLIQUE can be solved in n2logn time on random graphs. This is slightly worse than

polynomial and much better than 2εn, the running time of the best algorithms on worst-case

instances.

It can be shown that a random graph does not have cliques of large size with high probability.

Specifically, for k(n)� 2 log n, the probability that a random graph has a clique of size at least

k(n) is very small. This suggests an algorithm for CLIQUE which generates all subsets with

2logn vertices and checks whether these subgraphs have cliques. If atleast one subgraph has a

clique, the algorithm returns 1. A false negative (an instance in which the algorithm wrongly

returns 0) only occurs if there is a clique with more than 2 log n vertices, which is highly unlikely.

1.4 Fixed Parameter Intractability

Fixed parameter intractability is concerned with finer issues about time complexity than just

the difference between polynomial and non-polynomial time.

2

Example 1.4.1. VERTEX COVER

It is known that VERTEX COVER is NP-Complete. Given a graph G with n vertices and a

positive integer k 6 n, a naive algorithm would check the condition over all subsets of G with k

vertices. Thus, it has running time
(
n
k

)
≈ O(nk).

Question: Is it possible to design an algorithm for VERTEX COVER with running time

f(k).poly(n)?

The answer turns out to be ’Yes’. The next natural question is to ask whether INDSET, which

appears to be quite similar to VERTEX COVER, also has such a f(k).poly(n) algorithm. There

is strong evidence that it does not, since INDSET is a member of a large class of NP problems

that are hardest in the sense that one of them has a f(k).poly(n) algorithm iff all of them do.

It is widely believed that INDSET has complexity 2Ω(n). The intuitive feeling is that the naive

algorithm of enumerating all possible subsets is close to optimal.

Reference: Parameterized Complexity Theory - J. Flum, M. Grohe.

2 More Complexity Classes, Non-Determinism

Definition 2.1.1. EXP :=
⋃
c>1 DTIME

(
2n

c)
Easy observation: P ⊆ NP ⊆ EXP

The first inclusion is obvious. Suppose L ∈ P is decided by a TM N in polynomial-time. Then

L ∈ NP since we can take N as the TM M and q(x) ≡ 0, so that u is the empty string, where

M , q() and u are as in the definition of the class NP.

The second inclusion holds since, given a language L in NP and M , q() as per the definition

of the class NP, and on input x, we can exhaustively enumerate all strings u of length q(|x|)
and use M to check whether u is a valid certificate for x. M accepts L iff some u satisfies this

condition. Since q(n) = O(nc) for some c > 1, there are 2O(nc) choices for u, and thus we can

decide L in time 2O(nc).

It is known that P (EXP. Therefore, atleast one of P (NP and NP (EXP must hold. It

is conjectured that both inclusions are strict.

Definition 2.1.2. DUBEXP :=
⋃
c>1 DTIME

(
22nc)

Definition 2.1.3. Non-deterministic Turing Machine (NDTM):

A NDTM M is described using a 4-tuple

M = < Γ, Q, δ0, δ1 >

where δi : < Γ, Q >→< Γ, Q, {L,R} >, i = 0, 1, are transition functions. At each elementary

step, the TM selects δ0 or δ1 arbitrarily (thus being non-deterministic).

Remark: This is obviously an unrealistic machine. It is just a mathematical model which turns

out to be useful for our understanding.

Note: Apart from qstart and qhalt, we also have a special state qaccept.

Definition 2.1.4. We say that a NDTM M accepts a string x ∈ {0, 1}∗ if, on input x, there

exists a sequence of applications of the transition functions δ0 and δ1 that takes M to qaccept

starting from qstart.

Definition 2.1.5. Running Time of a NDTM:

Let T : N → N. We say that a NDTM M has running time T (n) if for every input x ∈ {0, 1}n

3

and for every sequence of non-deterministic choices of the transition functions, M always reaches

either qhalt or qaccept in T (n) steps.

Definition 2.1.6. Deciding a language in time T (n):

We say a NDTM M decides a language L ⊆ {0, 1}∗ in time T (n) if:

(i) the running time of M is T (n), and

(ii) M accepts x iff L(x) = 1.

Definition 2.1.7. NTIME(T (n)):

A language L ⊆ {0, 1}∗ is in NTIME(T (n)) if there is a NDTM M that decides L and has

running time bounded by c.T (n) where c is a constant that depends only on L and M but not

on input instances.

The following claim gives an equivalent definition of NP.

Claim. NP =
⋃
c>1 NTIME(nc)

Proof. The main idea in this proof is that we can view the sequence of non-deterministic choices

made by a NDTM M during an accepting computation as a certificate for the input, and vice-

versa.

Suppose L ∈ NP and M , q() are as per the definition of NP. We describe a polynomial time

NDTM N that uses M to decide L. On input x, it writes down a string u of length q(|x|),
using its ability to make non-deterministic choices for the transition functions. Then it verifies

whether u is a valid certificate by running the verifier M on u and x. If u is valid, N enters

qaccept. Thus, N enters qaccept on x iff there exists a valid certificate for x. Since p(n) = O(nc)

for some n > 1, L ∈ NTIME((nc)).

Conversely, suppose q : N → N is a polynomial and L is decided by a NDTM N in time q(n).

For every x in L, there exists a sequence of non-deterministic choices which enables N to enter

qaccept on input x. This sequence is of length q(|x|) and can be verified in polynomial time by a

deterministic TM M . M simulates N using the sequence of non-deterministic choices and verifies

that it would have entered qaccept on making these sequence of choices. Thus, the sequence serves

as a certificate for x, and L ∈ NP.

Definition 2.1.8. NEXP :=
⋃
c>1 NTIME

(
2n

c)
Definition 2.1.9. NDUBEXP :=

⋃
c>1 NTIME

(
22nc)

Fact: DUBEXP 6= NDUBEXP ⇒ EXP 6= NEXP ⇒ P 6= NP

Thus, for higher complexity classes, the assumption that deterministic time is not equal to

non-deterministic time becomes stronger.

3 Search versus Decision (for NP Problems)

Question: Does the search version of a problem in NP reduce to its decision version?

Answer: Yes, for any NP-Complete problem. We show the reduction explicitly in the case of

SAT.

Assume we are given a polynomial-time algorithm A that decides SAT (i.e. P = NP). We outline

an algorithm B that, on input a satisfiable CNF formula φ with n variables, finds a satisfying

4

assignment for φ using O(n) calls to A, with some additional polynomial-time overhead. We

first invoke A on φ to check if it is satisfiable. If it is satisfiable, we set x1 = 0 in φ and use A to

decide whether the corresponding formula is satisfiable. If it is satisfiable, we fix x1 = 0; if not,

we fix x1 = 1 (this can be done in polynomial time) and continue recursively with the simplified

formula, thus reducing the number of variables by 1 each time. This is reasonable since we know

that the formula must be satisfiable for at least one of the cases x1 = 0 and x1 = 1. Continuing

in this manner, we end up fixing all n variables while ensuring each intermediate formula is

satisfiable, which means that φ is satisfied by the final assignment to the variables. It is easily

seen that this algorithm invokes A (n+ 1) times.

Since every NP language is reducible to SAT, the search version of such a problem is equivalent

to the decision version, in the sense that if the decision version can be solved (equivalently, if P

= NP), then the search version can also be solved in polynomial time. We make this precise in

the following theorem:

Theorem. Suppose that P = NP. Then for every NP language L there exists a polynomial

time TM B that on input x ∈ L outputs a certificate for x.

Proof. The description of the algorithm B above proves the theorem in the case of SAT. Now,

let L be a NP language. We use the fact that the reduction from L to SAT outlined in the

Cook-Levin Theorem is, in fact, a Levin reduction. This implies that we have a polynomial-time

computable function f such that x ∈ L ⇐⇒ f(x) ∈ SAT and we can actually map a satisfying

assignment for f(x) into a certificate for x. Thus, we can use the algorithm above to determine

an assignment for f(x) and then map it into a certificate for x.

It is natural to ask if this is true of every language in NP in general. That this is not true, under

the assumption that DUBEXP 6= NDUBEXP, has been shown by Mihir Bellare and Shafi

Goldwasser in a paper titled The Complexity of Decision versus Search in 1992. This result is

stated below.

Result: (Informal Statement) There is a language in NP whose search version does not reduce

efficiently to its decision version, unless doubly-exponential time equals non-deterministic doubly-

exponential time.

References

[1] S. ARORA and B. BARAK “Computational Complexity: A Mordern Approach”, Cambridge

University Press, 2009

5

