
E0 224: Computational Complexity Theory
Chandan Saha

Lecture 7

Abhijat Sharma

Indian Institute of Science

Bangalore, India

27 August 2014

1 Class co− NP

If L ⊆ {0, 1}∗ is any language, we denote the complement of L by L̄. That is, L̄ = {0, 1}∗ \L. Hence,
we can define:

Definition 1. The complexity class co− NP consists of all the languages L, such that L̄ ∈ NP.
For example,

SAT = {φ : φ is not satisfiable }

It can also be equivalently defined as follows:

Definition 2. A language L belongs to the complexity class co − NP if there exists a polynomial
function q(), and a deterministic polynomial-time TM M, such that

x ∈ L iff ∀u ∈ {0, 1}q(x),M(< x, u >) = 1.

One can also define co−NP−completeness in a way similar to NP−completeness under polynomial-
time reduction:

Definition 3. A language L is said to be co− NP− complete iff

1. L ∈ co− NP

2. Every other language L′ ∈ co− NP is polynomial-time Karp reducible to L

For example, SAT ∈ co− NP− complete. Also, observe the following language:

TAUTOLOGY = {φ : φ is true for all possible assignments }

It can be easily verified that TAUTOLOGY ∈ co− NP− complete.

NOTE Therefore, similar to co− NP, we can define a complexity class co-C for every class C.

co− C = {L : L̄ ∈ C}

From this definition, it is easy to observe that P = co− P .

1

But, it is important to realise the difference between the classes C̄ and co− C. This can be easily
seen by the following statement:

If there are 2 classes C1, C2 such that C1 ⊆ C2, then co− C1 ⊆ co− C2

The above statement. we know, is definitely not true for C̄1 and C̄2.

1.1 Is NP = co− NP ?

Claim If NP 6= co− NP then P 6= NP.

Proof Suppose P = NP
=⇒co-P=co-NP
=⇒P=co-NP(∵ P = co− P)
=⇒NP=co-NP
Hence, we arrive at a contradiction.

Therefore, the assumption that NP 6= co − NP is a stronger assumption than P 6= NP. Thus, the
overall picture looks somewhat like this:

Observe that P ⊆ NP ∩ co− NP. But is P = NP ∩ co− NP ?

1.2 Significance of the above questions

Open questions such as whether P = NP or NP = co−NP or if P = NP∩ co−NP are known as
lower bound questions in complexity theory. They form the basis of large volumes of further research
and many significant results in the area. It can be interesting to think about the consequences of
solving any of these open problems. For example, what would happen if P = NP ? For every hard
problem that could only be efficiently verified, we would be able to find the correct answer in polynomial
time. It might imply that mathematicians could be replaced by efficient theorem-discovering machines,
Artificial Intelligence would be perfect and a lot of popular encryption schemes would lose their effects.

Similarly, if NP = co−NP, we would need to find efficient certificates to verify statements for which
essentially no certificate exists. Thus, to sum up, the consequences would be fairly dramatic and the
world would reduce to a computational Utopia. [1]

We will now discuss one of the major techniques used to prove some of such lower bound results.

2

2 Diagonalisation

Definition 4. Any proof technique is called a digonalisation technique if it solely uses the following
features:

1. Every string x ∈ {0, 1}∗ represents some TM, denoted by Mx, and every TM can be represented
by infinitely many strings.

2. There exists a Universal TM that, given any string x, can simulate the execution of the machine
Mx without much overhead.

There are a large number of lower bound results that are proved using the diagonalisation technique
described above. We also witnessed, in an earlier lecture, how this technique was used to prove the
undecidability of the Halting Problem. Some more such problems are are:

1. Deterministic Time Hierarchy Theorem

2. Non-Deterministic Time Hierarchy Theorem

3. Ladner’s Theorem

4. Baker, Gill, Solovay Theorem

We now describe some of the above proofs in detail.

3 Deterministic Time Hierarchy

Definition 5. We say a function f : N 7→ N is time-constructible if f(n) can be computed from n in
O(f(n)) time.

Most of the functions we usually deal with in day-to-day life are all time-constructible functions.
For example, all polynomial functions, logarithmic functions, trigonometric functions, exponential
functions etc. Now, we define the time hierarchy theorem with respect to such functions.

Theorem 1. Suppose f, g : N 7→ N are two time-constructible functions, such that g(n) = ω(f(n)log(f(n))),
then

DTIME(f(n)) (DTIME(g(n))

Proof : Let us first prove a simple result, DTIME(n)(DTIME(n2), which can be later generalised
to the above theorem.
Goal : To define a language L⊆ {0, 1}∗ such that L ∈ DTIME(n2) but L 6∈ DTIME(n).

On input x, the universal TM U simulates Mx on x for exactly | x |2 steps. If Mx halts and outputs
b, then U outputs 1− b. Otherwise, U outputs 0.
We say that L is the language decided by this machine U .
Observe that L ∈ DTIME(n2) as the machine U accepts L in at-most O(n2) time steps.

3

Now, we wish to show that there’s no deterministic TM that can decide L in linear time steps.
For contradiction, suppose N is a TM whose running time is bounded by CNn, where CN is a constant
and N decides the language L.
How long does it take for the universal TM to simulate N on input of length n? As we know, the
universal TM only adds a logarithmic overhead to the runtime, it would take CUCNnlogn time for
this simulation. And, asymptotically we know that n2 ≫ CUCNnlogn for n > n0.

Claim There exist a binary representation α of N such that | α |> n0, and the TM N and the TM
U disagree on the input α.

Proof On input α, the universal TM U simulates Mα = N , for exactly | α |2 steps of U. (Note that
| α |2≫ CUCN | α | log | α |). This means that N definitely halts during this simulation, as running
time of N is bounded by CN | α |. Now, U outputs exactly opposite to the output of N .
Thus, if N and U disagree on the input α, and U decides L, then N cannot decide L. Hence, it is
proved that L ∈ DTIME(n2) but L 6∈ DTIME(n).
Now, this proof would also hold for any other g(n) such that f(n) = ω(nlogn), and hence the aboove
theorem can be verified by replacing n by any time-constructible function f(n)

Consequences The time-hierarchy theorem guarantees that all the inequalities of DTIME complex-
ity classes are all proper inequalities, such as:

P (DTIME(2n) (DTIME(22n)...

These hierarchies eventually give rise to deterministic and non-deterministic versions of exponentials
hierarchies [2]. The theorem also guarantees that there are problems in P requiring arbitrary large
exponents to solve; in other words, P does not collapse to DTIME(nk) for any fixed k.

4 Ladner’s Theorem

Theorem 2. If P 6= NP, then there exists an “intermediate” NP language L ⊆ {0, 1}∗, that is neither
in P nor is NP-complete.

Proof For every function H : N 7→ N, we define

SATH = {φ ◦ 1n
H(n)

: φ ∈ SAT and | φ |= n}

Observe that the value of H(n) on n, only decides membership of strings of length greater than n, in
SATH .

n H(n) SATH

1 H(1) strings of length 1 in SATH

2 H(2) strings of length 2 in SATH

3 H(3) strings of length 3 in SATH

. . .

. . .

. . .
∞ . .

4

Now, we try to define the function H(n) :

Definition 6. H(n) is the smallest α < loglogn such that, for every x ∈ {0, 1}∗, and | x |≤ logn, Mα

outputs SATH(x) in time α | x |α. If such an α doesn’t exist, then H(n) = loglogn.

Fact 1 H(n) has been defined in such a way that if SATH ∈ P, then H(n) = O(1). And, if H(n) < C
for some constant C, for infinitely many values of n, then SATH ∈ P.
This fact implies that If SATH 6∈ P, then H(n) −→∞ as n −→∞.

Proof of one-side If SATH ∈ P, then H(n) = O(1).
Let the polynomial time TM be N , whose running time is C | x |d. Pick a string representation of N
(say α), that is larger than both C and d.
Then we claim that H(n) ≤ α for all values of n. This can be observed from the definition of H,
which implies that for n > 22

i
, H(n) ≤ i. So, as the value of n grows larger and larger, H(n) grows

approximately close to a small constant value.

Proof of the other side If H(n) ≤ C infinitely often, then SATH ∈ P.
Suppose there exists an x, such that H(n) = x for infinitely many n’s. This implies that the TM Mx

decides SATi in xnx time, because if this is not the case, if any Mi does not decide SATi within this
bound, H(n) 6= i for every n > 2|x|. Hence, SATH ∈ P.

Fact 2 H(n) is computable in a polynomial time function of n.

It can be easily verified that SATH ∈ NP. The rest of this proof will proceed under the assumption
that P 6= NP.

Claim 1 SATH 6∈ P

Proof Suppose SATH ∈ P, then let A be the algorithm that decides SATH in polynomial time.
We show that this would imply that SAT ∈ P, by giving another polynomial time algorithm A′ that
decides SAT .
The algorithm A′, when given as input any boolean function φ, calculates the length of φ, say n and
computes H(n) in polynomial time. Finally, it gives the string φ ◦ 1n

H(n)
as an input to the algorithm

A.
As we know that no such polynomial time algorithm can exist for an NP-complete language such as
SAT, we arrive at a contradiction.

Claim 2 SATH is not NP− complete

Proof Suppose SATH is NP− complete, then we must have a polynomial time reduction from SAT
to SATH . (SAT ∈ NP and every problem in NP can be reduced to an NP− complete problem)
Hence, we have

φ
f−−−−−−−−−−−−−−−→

poly-time reduction
ψ ◦ 1n

H(n)
, | φ |= m and | ψ |= n

5

such that
φ is satisfiable iff ψ is satisfiable

Therefore, | ψ ◦ 1n
H(n) |= n + 1 + nH(n) ≤ p(m) where p(m) is a polynomial function in m. Because

SATH 6∈ P, H(n) tends to a very large value for large n.
Let’s assume that H(n) > 10 and p(m) = m5, then n+ 1 + nH(n) ≤ m5 ⇒ n ≤

√
m

Thus, the larger the values of H(n), and proportional to m (the length of the formula φ), the
mapping will reduce φ to ψ where the length of ψ would be smaller by some fixed polynomial factor
(
√
m in the above example). Thus, performing the same reduction againon ψ and so on, we will get a

simple polynomial time algorithm that would decide SAT , which we know cannot be possible. Hence,
we arrive at another contradiction.

By Claims 1 and 2, we observe that SATH is a language in NP that is neither in P nor is NP −
complete.

Consequences There are very few problems that fall into this “intermediate” class between P and
NP−complete, since the status of most natural languages has been resolved thanks to clever algorithms
or reductions. Some of the exceptions are the problems of factoring, graph isomorphism, discrete log
etc, for which there is no proof yet that they are NP− complete or not.

5 Supplementary Exercises

The following problems can be taken as reading exercises for better understanding of the above men-
tioned topics covered in this lecture: (Most of these have also been included as Assignment-1 problems)

1. Explore whether PRIMES ∈ co− NP or PRIMES ∈ NP ∩ co− NP [3].

2. Non-deterministic Time Hierarchy Theorem, given initially by Stephen Cook in 1972.

3. Find examples of functions that are not Time-constructible.

4. Fact 2 about the function H(n), mentioned while proving the Ladner’s Theorem.

References

[1] Sanjeev Arora and Boaz Barak, 2007. Computational Complexity: A Modern Approach, Cambridge
University Press.

[2] Time Hierarchy Theorem. http://en.wikipedia.org/wiki/Time hierarchy theorem, Wikipedia.

[3] Vaughan Pratt. Every prime has a succinct certificate, SIAM Journal on Computing, vol.4.

6

