
E0 224 Computational Complexity Theory Indian Institute of Science, Bangalore
Fall 2014 Department of Computer Science and Automation

Lecture 8: Sep 4, 2014
Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in> Scribe: Pawan Kumar

8.1 Recap of the last Lecture

1. Two features/properties of diagonalization based proofs

(a) Every Turing Machine can be represented by binary strings.

(b) There is a universal Turing Machine that can simulate any other TM say M without much overhead with
running time within a log factor of the running time of M.

2. Remark

The P vs NP problem can not be resolved using just the two properties mentioned above.The reason is that ”Any
proof that uses only the above two properties must necessarily relativize. However we will show in today’s
lecture that any P vs NP problem/proof must necessarily involve a ’Non-relativizing’ technique.”

8.2 Oracle Machines and Limits of Diagonalization

The notion of relativization uses ”Oracle Turing Machine”.We will first define what is an Oracle TM both deterministic
as well as Non-deterministic.

8.2.1 Oracle Turing Machine

Definition 8.1.

1. An Oracle Turing Machine is a TM that has a special read-write tape called M’s oracle tape and three special
states qquery, qyes, qno.

2. To execute M, we specify the input as usual;and a language O ⊆ {0, 1}∗ that is used as an oracle for M.

3. While performing its computation, if M enters the state qquery then M checks whether the contents of the oracle
tape w ∈ O. If w ∈ O, M moves to the state qyes, else it moves to qno.

4. Regardless of the choice of O,a query like w ∈ O counts for a single step of M.

5. MO(x) denotes the output of the oracle TM M on input x ∈ {0, 1}∗ with O ⊆ {0, 1}∗ as the oracle.

We say that MO is deterministic Oracle Turing Machine if M is deterministic,otherwise if M is Non-deterministic we
say MO is a Non-detrerministic Oracle Turing Machine.

8-1

Lecture 8: Sep 4, 2014 8-2

Figure 8.1: a diagrametic view of OTM

Definition 8.2. A language L ⊆ {0, 1}∗ is in the complexity class PO (where O is an arbitrarily fixed language) if
there exist a deterministic polytime Oracle Turing Machine that decides L.

Definition 8.3. A language L ⊆ {0, 1}∗ is in the complexity class NPO (where O is an arbitrarily fixed language) if
there exist a Non-deterministic polytime Oracle Turing Machine that decides L.

Question : Is NP = PSAT ?

It is conjectured that NP (PSAT

NP (PSAT : Let L be a language in NP.By the Cook-Levin theorem there’s a poly-time reduction mapping
a string x to a boolean formula φx s.t. x ∈ L ⇐⇒ φx ∈ SAT . On input x we can compute φx and query the SAT
oracle of the Oracle Turing Machine in PSAT .

PSAT ⊆ NP : This statement is conjectured to be FALSE as it is also conjectured NP 6= Co −NP and it
can be observed that Co-NP is also contained in PSAT .

Claim : SAT ∈ PSAT where SAT denotes the language of unsatisfiable formulae i.e. SAT = {φ : φ is unsatisfiable
}

Proof. We have oracle access to SAT which returns true iff the formula given to it is satisfiable. A deterministic
poly-time Oracle Turing Machine can query its oracle if φ ∈ SAT and then give the opposite answer.

Form the above claim,we conjecture that NP 6= PSAT.

Claim: If O ∈ P then PO = P

Proof.

1. It trivially follows P ⊆ PO.

2. If O ∈ P ,then replace each oracle call with a deterministic poly-time computation of O.

3. Number of oracle calls by TM M can be atmost polynomial and product of two polynomial is another polyno-
mial. Hence, PO ⊆ P .

Lecture 8: Sep 4, 2014 8-3

Figure 8.2: Complexity Class Hierarchy

Question : Does there exist an oracle A s.t. PA = NPA ?

CANDIDATE A :

EXPCOM= {< M,x, 1n > : M is a deterministic TM M that accepts x in 2n steps }.

Claim : EXPCOM is EXP-Complete language under poly-time reduction.

1) EXPCOM is in EXP i.e. EXPCOM ∈ EXP.

2) Let L∈ EXP i.e. there exists a TM M s.t. M accepts x in exponential time.

Reduction L ≤P EXPCOM : Let x ∈ L and p(n) is the amount of time taken by TM M to accept x. A poly-time
reduction function f which reduces x to < M,x, 1p(n) >, s.t. x ∈ L ⇐⇒ < M,x, 1p(n) >∈ EXPCOM . Both side
implications are self explanatory.

Claim : PEXPCOM = NPEXPCOM

Proof.

1. EXP ⊆ PEXPCOM ,this holds trivially.Since EXPCOM is EXP-Complete language,there’s a polynomial time
reduction f s.t.x ∈ L ⇐⇒ f(x) ∈ EXPCOM . Once we compute f(x) form x we query oracle EXPCOM
of the Oracle Turing Machine in PEXPCOM .

2. PEXPCOM ⊆ NPEXPCOM ,this also holds trivially.

3. NPEXPCOM ⊆ EXP ,if M is a Non-deterministic poly-time oracle TM,we can simulate its execution with a
EXPCOM oracle in exponential time:Such time suffices both to enumerate all of M’s nonderministic choices
and to answer the EXPCOM oracle queries.

prop1 : Oracle O is arbitrarily fixed.Every Oracle TM with access to O can be represented by finite length binary
strings.

prop2 : There is a universal TM with access to O that can simulate any other turing machine MO on input x without
much overhead.

Lecture 8: Sep 4, 2014 8-4

Definition 8.4. We say a proof relativizes,if the same proof works w.r.t. any arbitrary oracle O.

Remarks :

1. In principle this fixed language(corresponds to oracle O) may be undecidable but in this course we will assume
it to be decidable.

• In case the oracle is a language it returns either 0 or 1 depending on whether query string is in language or
not.

• The oracle may return a general boolean string instead of a single bit assume 0 or 1.

2. Any proof that strictly uses the two properties of diagonalization mentioned above relativizes.This means any
result about standard TMs (TMs without access to oracle) that uses only diagonalization(meaning the two prop-
erties) also holds for Turing Machines with access to any arbitrary oracle.

3. It may happen that the result/proof about an Oracle Turing Machine,say M, does not hold when the oracle is
detatched from M. The reason could be the use of some specific properties of the oracle in the proof.

4. The power of the oracle effects the proofs involving P vs NP problems.The result of the problems may differ
when we use powerful oracle as compare to a weak oracle.

Theorem 8.5. There exists languages(oracles) A,B such that PA = NPAandPB 6= NPB .

Proof. We have already proved PA = NPA if A is EXPCOM. The same result also holds when A is PSPACE-
Complete.(This may be a good exercise.)

Now we have to find a language say B such that PB 6= NPB ,but why this theorem is important for us(what we are
going to achieve?).The following discussion tries to answer this question.

1. By using the theorem stated above one can show diagonalization techniques solely based on the two properties
will not resolve the P vs NP question.

2. If P 6= NP is provable using the two properties,then even if assistance of oracle is given then PO 6= NPO

should hold for all oracles O,but there exist an oracle A such that PA = NPA.

3. If P = NP is provable using the two properties,then even if assistance of oracle is given then PO = NPO

should hold for all oracles O ,but there exist an oracle B such that PB 6= NPB .

4. The two points stated above clearly shows that if the stated theorem is TRUE then proof solely using the two
properties will not resolve the P vs NP question.

Proof Sketch (PB 6= NPB) : For an arbitrarily language B let UB be the unary language UB = {1n :there exist a
string of length n in B }.

Claim : UB ∈ NPB ,This claim holds trivially, Given a string 1n, we guess a string x of length n and ask the oracle
’is x in B?’.This computation is performed by the oracle in one step.Hence UB ∈ NPB .Since, we did not restrict B
to have any particular property,this result holds for any B.

Now we construct B in such a manner that UB /∈ PB . We will include strings in B in stages ,Construction of B is an
iterative process which uses the strings which are currently present in B.

Stage i : just before stage i we have decided membership of finitely many strings in B.

Lecture 8: Sep 4, 2014 8-5

1. Initially B is empty and each stage determines the status of a finite number of strings.

2. For every i,let MB
i be the oracle TM represented by binary expansion of i.

3. Let ni be the number strictly larger than the length of a longest string whose ”fate” has been decided.

4. Simulate MB
i on input 1ni for 2ni

10 steps.

5. Whenever MB
i queries the oracle B with strings whose ’fate’ has already been decided,we answer consistently,

6. If MB
i queries a string ’y’ whose ’fate’ has not been decided yet,then we decide the ’fate’ of that string by not

including it in B.(hence oracle answers no to such queries).

7. If MB
i does not halt or outputs 0 after 2ni

10 steps then include a string of length ni in B that has not been queried
by MB

i .(Surely there exist one such string because there are 2ni strings are there and MB
i might have queried

atmost 2ni

10 strings of length ni). One can pick string in a lexicographically the smallest and discard the rest.

8. If MB
i Outputs 1,then don’t include any string of length ni in B.

Claim : UB /∈ PB

We can see that at any stage i answer of MB
i on 1ni is incorrect.If MB

i outputs 1 then according to (8) there is no
string of length ni in B,which implies 1ni /∈ UB .Similarly if MB

i doesn’t halt or outputs 0 then according to (7)
there’s a string of length ni in B,which implies 1ni ∈ UB .Hence in either case the answer of MB

i is incorrect.Since
every polynomial p(n) is smaller than 2n

10 for large n,and every Turing machine M is represented by infinitely many
strings,our construction will ensure that M does not decide UB in polynomial time [M1].

References

[M1] S. ARORA and B. BARAK “Computational Complexity: A Mordern Approach,” Cambridge University
Press, 2009

