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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Abstract

1. Study space requirement of Turing machine

2. Study space complexity classes

3. Hierarchy between classes

4. Savitch’s Theorem

9.2 Space complexity or space bounded computation

Definition 9.1 (class DSPACE(S(n)) (or SPACE(S(n)) ) Let S : N 7→ N a language L ⊆ {0, 1}∗ is in
SPACE (S(n)), if there is a TM M that decides L using no more than S(n) cells of the work tapes (excluding
input tape)

Definition 9.2 (class NSPACE) Let S : N 7→ N a language L ⊆ {0, 1}∗ is in NSPACE (S(n)), if there is
a Non deterministic TM M that decides L using no more than S(n) cells of the work tapes (excluding input
tape)

Here S(n) is space constructible function

Definition 9.3 (Space constructible function) a function f is space-constructible if there exists a Turing
machine M which, given a string 1n consisting of n ones, outputs the binary (or unary) representation of
f(n), while using only O(f(n)) space

Space constructible function examples log n, n, n3, 2n

Not space constructible function examples log log n, f(n) = C(a constant function)

Definition 9.4 (class PSPACE)

PSPACE =
⋃

c>=1

SPACE(nc)

Problems which are solvable by a deterministic turing machine using polynomial cells on work tape.
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Definition 9.5 (class NPSPACE)

NPSPACE =
⋃

c>=1

NSPACE(nc)

Language decided by non deterministic turing machines using polynomial cells on work tape.

Examples of problems in PSPACE

3SAT problem

To show: To show: a TM which decides 3SAT in linear space.
If k is number of variables in 3SAT problem, generate all possible 2k values and check if any of them satisfies.
Set up a counter which counts from 0 to 2k, this needs only O(k) space.

Circuit evaluation

cireval = {(φ, a) : φ(a) = 1}

Its a P complete problem, when φ is 3CNF then cireval can be solved in log space

Log space computation

L = SPACE(log n)

NL = NSPACE(log n)

Examples of problems in NL

PATH = {〈G, s, t〉; there is a path from node s to node t in directed graph G}

To show : A NDTM with space log n which verifies PATH in log time
Have a pointer which starts at start node s, and TM guesses next node, verify that next node is reachable
from current node, if not stop TM and output NO. if reachable move pointer to current node, continue above
till we reach ending node t(stop and output YES), or adjacency condition fails. In either case TM halts and
outputs an answer.

Hilbert’s Nullstellensatz

f1...fn ∈ Q[x1...xn]

f ′is are polynomials in variables x1...xn with rational co-efficient.

Task: check if f1...fn have common solution over complex numbers. This can be solved in PSPACE
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9.3 Configuration graph of a TM – GM,x

Definition 9.6 Configuration graph of a TM – GM,x Configuration graph of a TM M, GM,x is a directed
graph whose node corresponds to all possible configurations of M where input contains value x.
Configuration is a snapshot of M during its execution.
Configuration graph depends both on input and machine M.

Configuration graph vertex contains

1. Non-blank contents of working tapes

2. current state

3. current head position

Configuration vertex of an S(n) space bounded machine can be defined using O(S(n)) bits
Configuration graph contains a start vertex/node denoted by Cstart, and a fixed unique accepting node,
Caccept.
There is an edge from node Ci to Cj if M can go from config Ci to Cj by application of one transition
function.

NOTE To make Caccept unique erase all working tapes once we reach Caccept

If M is deterministic every Ci has at most one outgoing edge
If M is non-deterministic every Ci has at most two outgoing edge

Observation M accepts x if and only if there is a path from Cstart to Caccept in GM,x

Theorem 9.7 (Theorem)

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

Proof:
DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n))

a since a deterministic TM, run time is bounded by T(n) where as,a machine using S(n) space can run for
2Ω(S(n)), as space can be reused.

NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

To show: problems solvable by non deterministic time machine using S(n) space can be solvable by determin-
istic time machine in 2O(S(n)) time. Possible number of nodes in configuration graph of NSPACE(S(n))
machine is 2O(S(n)), we can use deterministic STCON(st-connectivity) algorithm to find is there a path from
Cstart to Caccept.whose running time 2O(S(n)).

9.4 Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem) Let S(n) be a space constructible function and S(n) ≥ log n, then
NSPACE(S(n)) ⊆ DSPACE((S(n))2)
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Observation log n implies machine should at least maintain a pointer to symbol being read from input
tape

To prove: problems solvable by NSPACE(S(n)) machine can be solvable by a deterministic machine upper
bounded by space O(S(n))2)
We show this by giving a path from Cstart to Caccept using O(S(n))2) cells on working tape.

Proof: Let L ∈ NSPACE(S(n))
There is a NTM M that decides L using O(S(n)) space, Number of configuration’s is |GM,x| ≤ 2c∗S(n), where
c is constant depending on machine M but independent of input.

Lets construct a deterministic TM that decides L.Given configuration graph if we can find a path Cstart to
Caccept it would mean that L ∈ N

Task: On input x, we wish to check if there is a path from Cstart to Caccept in GM,x

We define a recursive procedure Reach(C1,C2,i) which, outputs is there a path of length i, between given
vertices. It checks if there is a path of length i/2 between C1 and intermediate vertex v and path of length
i/2 between v and C2.

Is there an edge between to configuration’s can be checked in O(1) time. We just need to see only few bits in
adjacent configurations(as computation is local).

1: procedure Reach(C1,C2,i)
2: if i == 0 then return C1 == C2

3: else if i == 1 then
4: return true if there is an edge b/w C1 and C2

5: else
6: for all vertex v do
7: if Reach(C1, v, i / 2) and Reach(v,C2, i / 2) then
8: return true
9: return false

Let N = 2O(S(n)) be number of nodes
i gets halved in each recursion call, i.e recursion depth will be log i = logN
In recursion stack space required is to store formal and local variables(C1,C2,i,v) will be O(logN).
total space requirement will be O((logN)2).
i.e O((log(2O(S(n)))2) = O((S(n))2)
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