
Boolean Circuits

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

Output Node
(outdegree zero)

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

Output Node
(outdegree zero)

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

Output Node
(outdegree zero)

Input Nodes
(indegree zero)

A n-input, single-output Boolean circuit is a DAG with n sources and one sink.

All remaining vertices are called gates and are labeled with the logical operators
AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

A n-input, single-output Boolean circuit is a DAG with n sources and one sink.

All remaining vertices are called gates and are labeled with the logical operators
AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

(inputs) (output)

Size of the circuit C, denoted by |C| = number of nodes in C

A n-input, single-output Boolean circuit is a DAG with n sources and one sink.

All remaining vertices are called gates and are labeled with the logical operators
AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

(inputs) (output)

Size of the circuit C, denoted by |C| = number of nodes in C

A n-input, single-output Boolean circuit is a DAG with n sources and one sink.

All remaining vertices are called gates and are labeled with the logical operators
AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

(inputs) (output)

Value of the circuit C = value[output node]

Size of the circuit C, denoted by |C| = number of nodes in C

A n-input, single-output Boolean circuit is a DAG with n sources and one sink.

All remaining vertices are called gates and are labeled with the logical operators
AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

(inputs) (output)

Parity

Parity

Output ONE if, and only if, there are an odd number of inputs that are 1.

Parity

Output ONE if, and only if, there are an odd number of inputs that are 1.

When does a circuit accept a language L?

When does a circuit accept a language L?

When does a circuit accept a language L?

Strings
of length k

When does a circuit accept a language L?

Strings
of length k

A family of circuits accepts a language L if,
for every n, there is a circuit Cn

that outputs 1 precisely on inputs that belong to L.

Let L be any language.
Is there a circuit that accepts L?

Let L be any language.
Is there a circuit that accepts L?

Possibly of exponential size?

0 0 0
0 0 1
0 1 0
0 0 1
1 0 0
1 0 1
1 1 0
1 0 1
1 1 1

0 0 0
0 0 1
0 1 0
0 0 1
1 0 0
1 0 1
1 1 0
1 0 1
1 1 1

0 0 0
0 0 1
0 1 0
0 0 1
1 0 0
1 0 1
1 1 0
1 0 1
1 1 1

0 0 0
0 0 1
0 1 0
0 0 1
1 0 0
1 0 1
1 1 0
1 0 1
1 1 1

0 0 0
0 0 1
0 1 0
0 0 1
1 0 0
1 0 1
1 1 0
1 0 1
1 1 1

0 0 0
0 0 1
0 1 0
0 0 1
1 0 0
1 0 1
1 1 0
1 0 1
1 1 1

Some of the strings in, say, Lc.

So, given enough resources, circuits
can figure out everything!

So, given enough resources, circuits
can figure out everything!

Let’s try restricting their resources.

So, given enough resources, circuits
can figure out everything!

Let’s try restricting their resources.

P/poly: The class of languages accepted by
polynomial-sized circuit families.

So, given enough resources, circuits
can figure out everything!

Let’s try restricting their resources.

P/poly: The class of languages accepted by
polynomial-sized circuit families.

Eg. The language of “all ones” can be decided by a linear-sized circuit.

In fact, any unary language
can be decided by a linear-sized circuit.

In fact, any unary language
can be decided by a linear-sized circuit.

Think: How powerful does this make the class P/poly?

In fact, any unary language
can be decided by a linear-sized circuit.

Think: How powerful does this make the class P/poly?

Hint: Can you think of an unary language that is undecidable?

P is contained in P/poly.

P is contained in P/poly.

sk - this entry has symbol k and
does not have the head over it.

hk - this entry has symbol k and
the tape head is pointing here.

sk - this entry has symbol k and
does not have the head over it.

hk - this entry has symbol k and
the tape head is pointing here.

Turing Machines with advice

Turing Machines with advice

Turing Machines with advice

Turing Machines with advice

Turing Machines with advice

Turing Machines with advice

Turing Machines with advice

Turing Machines with advice

free advice!

DTIME(T(n))/a(n)

DTIME(T(n))/a(n)

The class of languages decidable by
time-T(n) TMs with a(n) bits of advice,

contains every L such that
there exists a sequence{αn} of strings

withαn∈{0,1}a(n) and a TM M satisfying:

M(x,αn) = 1⇔ x ∈ L

for every x ∈ {0, 1}n, where on input
(x,αn) the machine M runs for at most O(T(n)) steps.

In fact, any unary language
can be decided by a linear-sized circuit.

Think: How powerful does this make the class P/poly?

Hint: Can you think of an unary language that is undecidable?

Think: How powerful does this make the class P/poly?

Hint: Can you think of an unary language that is undecidable?

In fact, any unary language
can be decided by a TM with very little advice.

In fact, any unary language
can be decided by a TM with very little advice.

Polynomial time TMs with polynomial advice decide P/poly.

/ = �c,d (nc)/nd

One direction is easy - which one?

Circuits are a non-uniform model of computation.
!

They are akin to Turing Machines with advice.
!

P/poly contains P, but also contain undecidable languages!

Summary

