BOOLEAN CIRCUITS

Input Nodes (indegree zero)

All remaining vertices are called **gates** and are labeled with the logical operators AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

All remaining vertices are called **gates** and are labeled with the logical operators AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

All remaining vertices are called **gates** and are labeled with the logical operators AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

Size of the circuit C, denoted by |C| = number of nodes in C

All remaining vertices are called **gates** and are labeled with the logical operators AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

Size of the circuit C, denoted by |C| = number of nodes in C

All remaining vertices are called **gates** and are labeled with the logical operators AND, OR, NOT.

AND/OR gates have fan-in two and NOT gates have fan-in one.

Size of the circuit C, denoted by |C| = number of nodes in C

Value of the circuit C = value[output node]

PARITY

PARITY

Output **ONE** if, and only if, there are an **odd** number of inputs that are **1**.

PARITY

Output **ONE** if, and only if, there are an **odd** number of inputs that are **1**.

Strings of length k

Strings of length k

A **family** of circuits **accepts a language** L if, for every n, there is a circuit C_n that outputs 1 precisely on inputs that belong to L.

Let L be any language. Is there a circuit that accepts L? Let L be any language. Is there a circuit that accepts L?

Possibly of exponential size?

Some of the strings in, say, L^c.

Let's try restricting their resources.

Let's try restricting their resources.

P_{/poly}: The class of languages accepted by **polynomial-sized** circuit families.

Let's try restricting their resources.

P_{/poly}: The class of languages accepted by polynomial-sized circuit families.

Eg. The language of "all ones" can be decided by a linear-sized circuit.

Think: How powerful does this make the class P/poly?

Think: How powerful does this make the class P/poly?

Hint: Can you think of an unary language that is undecidable?

P is contained in $P_{\text{/poly.}}$

${\bf P}$ is contained in ${\bf P}_{/poly.}$

s_k - this entry has symbol k and does **not** have the head over it.

 h_{k} - this entry has symbol k and the tape head \boldsymbol{is} pointing here.

s_k - this entry has symbol k and does **not** have the head over it.

 h_{k} - this entry has symbol k and the tape head \boldsymbol{is} pointing here.

free advice!

DTIME(T(n))/a(n)

DTIME(T(n))/a(n)

The class of languages decidable by time-T(n) TMs with a(n) bits of advice, contains every L such that there exists a sequence $\{\alpha_n\}$ of strings with $\alpha_n \in \{0,1\}^{a(n)}$ and a TM M satisfying:

 $M(x, \alpha_n) = 1 \Leftrightarrow x \in L$

for every $x \in \{0, 1\}^n$, where on input (x, α_n) the machine M runs for at most O(T(n)) steps.

Think: How powerful does this make the class P/poly?

Hint: Can you think of an unary language that is undecidable?

In fact, *any* **unary language** can be decided by a TM with very little advice.

Think: How powerful does this make the class **P**_{/poly}?

Hint: Can you think of an unary language that is undecidable?

In fact, *any* **unary language** can be decided by a TM with very little advice.

Polynomial time TMs with polynomial advice decide $P_{/poly.}$

$$P_{\text{poly}} = \cup_{c,d} DTIME(n^c)/n^d$$

One direction is easy - which one?

Summary

Circuits are a non-uniform model of computation.

They are akin to Turing Machines with advice.

P_{/poly} contains P, but also contain undecidable languages!