
Boolean Circuits

(Contd.)



Karp-Lipton Theorem

If NP ⊆ P/poly, then the polynomial  
hierarchy collapses to the second level. 
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C1 C2 C3 …



There exists a boolean function

that cannot be computed by circuits of size

A Simple Lower Bound
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Space of all boolean circuits
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Space of all boolean circuits
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Number of these circuits: 2ct log t
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22n

2ct log t

Boolean 
Functions

Boolean 
Circuits

Let t = 2n/n(c+1)
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2n/10n
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Definition

The class AC.

The class ACi is defined similarly to NCi except that
gates are allowed to have unbounded fan-in.

The class AC is ⋃i≥0NCi.

NCi ⊆ACi ⊆NCi+1

Parity is in NC1.



Does every problem in P admit an efficient 
parallel implementation? 

!

In other words, is P = NC?



Definition

P-Completeness

A language is P-complete if it is in P  
and every language in P  

is log-space reducible to it. 



P-Completeness: Consequences

Let L be a P-complete language. Then, 
!

L belongs to NC if and only if P = NC. 
L belongs to L if and only if P = L.

(L is the class of all languages that can be decided in log-space.)
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SAT cannot be solved in polynomial time
and poly-logarithmic space.



Definition



TISP(T(n),S(n)) := the set of languages decided
by a TM M that on every input x:

- takes at most O(T(n)) steps, and,
- uses at most O(S(n)) cells of its read-write tape;

where n := |x|.

Definition



PLAN



PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)



PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)



PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)

SAT



PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)

SAT

(Cook-Levin)
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The configuration graph has:

1. nodes that require n2 bits to describe,
2. an accepting path of length at most n12 on

inputs that belong to L
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there exists a path from Cstart to Cend

of length at most n12.

TISP(n12,n2) ⊆ ∑2TIME(n8)

[there exists, for all]

there exists a path from Cstart to Cend

via C1, C2, … , Ct, where
for all i,

Ci is reachable from Ci-1 in n6 steps.
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∑2TIME(n8) ⊆ NTIME(n9.6)
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NTIME(n) ⊆ DTIME(n1.2)

[Proof on board]


