
Boolean Circuits

(Contd.)

Karp-Lipton Theorem

If NP ⊆ P/poly, then the polynomial
hierarchy collapses to the second level.

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

⇒ ∏2 ⊆ ∑2NP ⊆ P/poly

⇒ ∏2 ⊆ ∑2NP ⊆ P/poly

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

⇒ ∏2 ⊆ ∑2NP ⊆ P/poly

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

There exists a polynomial-sized* circuit
that can compute the certificate v.

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

⇒ ∏2 ⊆ ∑2NP ⊆ P/poly

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

There exists a polynomial-sized* circuit
that can compute the certificate v.

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

*If the size of this circuit is q(n); then it has a representation that uses at most q2(n) bits.

⇒ ∏2 ⊆ ∑2NP ⊆ P/poly

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

There exists a polynomial-sized* circuit
that can compute the certificate v.

�w � {0, 1}q
2(n)�u{0, 1}p(n)�(u,)

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

*If the size of this circuit is q(n); then it has a representation that uses at most q2(n) bits.

⇒ ∏2 ⊆ ∑2NP ⊆ P/poly

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

There exists a polynomial-sized* circuit
that can compute the certificate v.

�w � {0, 1}q
2(n)�u{0, 1}p(n)�(u,)Cw(ɸ,u)

�u � {0, 1}p(n)�v � {0, 1}q(n)�(u, v)

*If the size of this circuit is q(n); then it has a representation that uses at most q2(n) bits.

(ɸ)

1 iff there is a
satisfying assignment

that sets x1 to 1.

(ɸ)

1 iff there is a
satisfying assignment

that sets x1 to 1.

(ɸ,b1)

1 iff there is a
satisfying assignment

that sets x1 to b1

and x2 to 1.

(ɸ)

1 iff there is a
satisfying assignment

that sets x1 to 1.

(ɸ,b1,b2)

1 iff there is a
satisfying assignment

that sets x1 to b1, x2 to b2,
and x3 to 1.

(ɸ,b1)

1 iff there is a
satisfying assignment

that sets x1 to b1

and x2 to 1.

(ɸ)

1 iff there is a
satisfying assignment

that sets x1 to 1.

(ɸ,b1,b2)

1 iff there is a
satisfying assignment

that sets x1 to b1, x2 to b2,
and x3 to 1.

(ɸ,b1)

1 iff there is a
satisfying assignment

that sets x1 to b1

and x2 to 1.

(ɸ)

1 iff there is a
satisfying assignment

that sets x1 to 1.

(ɸ,b1,b2)

1 iff there is a
satisfying assignment

that sets x1 to b1, x2 to b2,
and x3 to 1.

(ɸ,b1)

1 iff there is a
satisfying assignment

that sets x1 to b1

and x2 to 1.

(ɸ)

1 iff there is a
satisfying assignment

that sets x1 to 1.

(ɸ,b1,b2)

1 iff there is a
satisfying assignment

that sets x1 to b1, x2 to b2,
and x3 to 1.

(ɸ,b1)

1 iff there is a
satisfying assignment

that sets x1 to b1

and x2 to 1.

C1 C2 C3 …

There exists a boolean function

that cannot be computed by circuits of size

A Simple Lower Bound

Space of all boolean functions

Space of all boolean functions

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Space of all boolean functions

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Space of all boolean functions

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Number of these functions: 22n

Space of all boolean circuits

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

Space of all boolean circuits

��∨�

∧

�

∧

�

¬

���

∨

���

∧

�

∨

�

¬

���

∧

�

¬

��

Number of these circuits: 2ct log t

22n

2ct log t

Boolean
Functions

Boolean
Circuits

22n

2ct log t

Boolean
Functions

Boolean
Circuits

Let t = 2n/n

22n

2ct log t

Boolean
Functions

Boolean
Circuits

Let t = 2n/n(c+1)

There exists a boolean function

that cannot be computed by circuits of size

There exists a boolean function

that cannot be computed by circuits of size

2n/10n

Non-Uniform Hierarchy Theorem

n < h(n) < g(n) < 2n/n

Non-Uniform Hierarchy Theorem

SIZE(h(n)) SIZE(g(n))�

For g(n) “bigger” than h(n), we have:

n < h(n) < g(n) < 2n/n

Non-Uniform Hierarchy Theorem

SIZE(h(n)) SIZE(g(n))�

For g(n) “bigger” than h(n), we have:

n < h(n) < g(n) < 2n/n

Non-Uniform Hierarchy Theorem

SIZE(h(n)) SIZE(g(n))�

For g(n) “bigger” than h(n), we have:

n < h(n) < g(n) < 2n/n

Any boolean function from {0,1}n to {0,1}
can be decided by circuits of size 2n.

Any boolean function from {0,1}n to {0,1}
can be decided by circuits of size 2n.

There exists boolean function from {0,1}n to {0,1}
cannot be decided by circuits of size 2n/10n.

SIZE(n) ⊊ SIZE(n2)

SIZE(n) ⊊ SIZE(n2)

Any boolean function from {0,1}2logn to {0,1}
can be decided by circuits of size n2.

SIZE(n) ⊊ SIZE(n2)

Any boolean function from {0,1}2logn to {0,1}
can be decided by circuits of size n2.

There exists boolean function from {0,1}2logn to {0,1}
cannot be decided by circuits of size n2/2(logn).

Definition

Definition

The class NC.

Definition

The class NC.

A language L is NCd if L can be decided by a family of
circuits {Cn} where Cn has:
- poly(n) size and
- depth O(logdn).

Definition

The class NC.

A language L is NCd if L can be decided by a family of
circuits {Cn} where Cn has:
- poly(n) size and
- depth O(logdn).

The class NC is ⋃i≥1NCi.

Definition

Definition

The class AC.

Definition

The class AC.

The class ACi is defined similarly to NCi except that
gates are allowed to have unbounded fan-in.

Definition

The class AC.

The class ACi is defined similarly to NCi except that
gates are allowed to have unbounded fan-in.

The class AC is ⋃i≥0NCi.

Definition

The class AC.

The class ACi is defined similarly to NCi except that
gates are allowed to have unbounded fan-in.

The class AC is ⋃i≥0NCi.

NCi ⊆ACi ⊆NCi+1

Definition

The class AC.

The class ACi is defined similarly to NCi except that
gates are allowed to have unbounded fan-in.

The class AC is ⋃i≥0NCi.

NCi ⊆ACi ⊆NCi+1

Parity is in NC1.

Does every problem in P admit an efficient
parallel implementation?

!

In other words, is P = NC?

Definition

P-Completeness

A language is P-complete if it is in P
and every language in P

is log-space reducible to it.

P-Completeness: Consequences

Let L be a P-complete language. Then,
!

L belongs to NC if and only if P = NC.
L belongs to L if and only if P = L.

(L is the class of all languages that can be decided in log-space.)

GOAL

GOAL

SAT cannot be solved in polynomial time
and poly-logarithmic space.

Definition

TISP(T(n),S(n)) := the set of languages decided
by a TM M that on every input x:

- takes at most O(T(n)) steps, and,
- uses at most O(S(n)) cells of its read-write tape;

where n := |x|.

Definition

PLAN

PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)

PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)

PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)

SAT

PLAN

NTIME(n) ⊈ TISP(n1.2,n0.2)

SAT

(Cook-Levin)

NTIME(n) ⊆ TISP(n1.2,n0.2)

Roadmap

NTIME(n) ⊆ TISP(n1.2,n0.2)

NTIME(n10) ⊆ TISP(n12,n2)

Roadmap

TISP(n12,n2) ⊆ ∑2TIME(n8)

NTIME(n) ⊆ TISP(n1.2,n0.2)

NTIME(n10) ⊆ TISP(n12,n2)

Roadmap

TISP(n12,n2) ⊆ ∑2TIME(n8)

∑2TIME(n8) ⊆ NTIME(n9.6)

NTIME(n) ⊆ TISP(n1.2,n0.2)

NTIME(n10) ⊆ TISP(n12,n2)

Roadmap

TISP(n12,n2) ⊆ ∑2TIME(n8)

NTIME(n) ⊆ TISP(n1.2,n0.2)

Roadmap

NTIME(n10) ⊆ TISP(n12,n2)

∑2TIME(n8) ⊆ NTIME(n9.6)

n2

n12
 s

te
ps

TISP(n12,n2) ⊆ ∑2TIME(n8)

n2

n12
 s

te
ps

The configuration graph has:

1. nodes that require n2 bits to describe,
2. an accepting path of length at most n12 on

inputs that belong to L

TISP(n12,n2) ⊆ ∑2TIME(n8)

[there exists, for all]

there exists a path from Cstart to Cend

of length at most n12.

TISP(n12,n2) ⊆ ∑2TIME(n8)

[there exists, for all]

there exists a path from Cstart to Cend

of length at most n12.

TISP(n12,n2) ⊆ ∑2TIME(n8)

[there exists, for all]

there exists a path from Cstart to Cend

of length at most n12.

TISP(n12,n2) ⊆ ∑2TIME(n8)

[there exists, for all]

there exists a path from Cstart to Cend

of length at most n12.

TISP(n12,n2) ⊆ ∑2TIME(n8)

[there exists, for all]

there exists a path from Cstart to Cend

via C1, C2, … , Ct, where
for all i,

Ci is reachable from Ci-1 in n6 steps.

NTIME(n) ⊆ TISP(n1.2,n0.2)

NTIME(n) ⊆ DTIME(n1.2)

∑2TIME(n8) ⊆ NTIME(n9.6)

NTIME(n) ⊆ TISP(n1.2,n0.2)

NTIME(n) ⊆ DTIME(n1.2)

∑2TIME(n8) ⊆ NTIME(n9.6)

NTIME(n) ⊆ TISP(n1.2,n0.2)

NTIME(n) ⊆ DTIME(n1.2)

[Proof on board]

