BOOLEAN CIRCUITS
]

l_'_l
OO0

(CONTD.)

Karp-Lipton Theorem

If NP C Pjpoly, then the polynomial
hierarchy collapses to the second level.

vu € {0, 17?3y € {0, 119 ¢ (u, v)

vu € {0,1}P™ Jy € {0, 119 b (u, v)

vu e {0, 1P 3y € {0,119 dp(u, v)

There exists a polynomial-sized™ circuit
that can compute the certificate v.

vu e {0, 1P 3y € {0,119 dp(u, v)

There exists a polynomial-sized™ circuit
that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most gq(n) bits.

vu e {0, 1P 3y € {0,119 dp(u, v)

There exists a polynomial-sized™ circuit
that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most gq(n) bits.

Fw € {0,119 Mvufo, 1P p (v,)

vu € {0,1}P™ Jy € {0, 119 b (u, v)

There exists a polynomial-sized™ circuit
that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most gq(n) bits.

Fw € {0,139 M vuf0, 1P ¢ (1,Co (b, u))

1 iff there is a
satisfying assignment
that sets x; to 1.

1 iff there is a 1 iff thereis a
satisfying assignment satisfying assignment

that sets x; to 1. that sets x; to bs
and x» to 1.
—— —t—
o000 OO0

() (d,b)

1 iff thereis a 1 iff there is a 1 iff thereis a
satisfying assignment Satisfying assignment satisfying assignment
that sets x1 to 1. that sets x; to b that sets x; to by, x2 to by,

and x> to 1. and x3 to 1.
. [(]
o0

o0 o0

(P) (p,b1) (,b1,by)

@ 1 iff there is a L iff therels a

satisfying assignment satisfying assighment satisfying assignment

that sets x1 to 1. that sets x1 to bs that sets x1 to by, x2 to by,
and x> to 1. and x3 to 1.
. [(]
o0
oo o000

(P) (p,b1) (,b1,by)

:

@ 1 iff there is a L iff therels a

satisfying assignment satisfying assighment satisfying assignment

that sets x1 to 1. that sets x1 to bs that sets x1 to by, x2 to by,
and x> to 1. and x3 to 1.
. [(]
o0
oo o000

(P) (p,b1) (,b1,by)

o

1 iff there is a
satisfying assignment

that sets x; to 1.

:

1 iff there is a

satisfying assignment
that sets x1 to bs
and x, to 1.

]

—t—
Oo0oo

(CI),bl)

1 iff thereis a
satisfying assignment
that sets x1 to b1 x2 to by,
and x3 to 1.

]

——
Oo0oo

(¢p,b1,b2)

C3 ...

A Simple Lower Bound

There exists a boolean function
f:{0,1}"™ — {0, 1}

that cannot be computed by circuits of size

Space of all boolean functions
f:{0,1}" — {0, 1}

Space of all boolean functions
f:{0,1}" — {0, 1}

000
001
010
Oll
100
101
110
111

Space of all boolean functions
f:{0,1}" — {0, 1}

O 4 O 4 O 4 O
O O 44 O O —+
O O OO ™ ™= —
B H B B

Space of all boolean functions
f:{0,1}" — {0, 1}

O 4 O 4 O 4 O
O O 44 O O —+
O O OO ™ ™= —
B H B B

Number of these functions: 22"

Space of all boolean circuits

Space of all boolean circuits

Number of these circuits: 2¢tlogt

22“ zct logt

Boolean Boolean
Functions Circuits

22“ zct logt

Boolean Boolean
Functions Circuits

Lett = 2"/n

22“ zct logt

Boolean Boolean
Functions Circuits

Let t = 2"/n(c+1)

There exists a boolean function
f:{0,1}"™ — {0, 1}

that cannot be computed by circuits of size

There exists a boolean function
f:{0,1}"™ — {0, 1}

that cannot be computed by circuits of size

2"[10n

Non-Uniform Hierarchy Theorem

Non-Uniform Hierarchy Theorem

For g(n) “bigger” than h(n), we have:

SIZE(h(n)) C SIZE(g(n))

——

h(n) < g(n)

Non-Uniform Hierarchy Theorem

For g(n) “bigger” than h(n), we have:

SIZE(h(n)) C SIZE(g(n))

——

h(n) < g(n) < 2"/n

Non-Uniform Hierarchy Theorem

For g(n) “bigger” than h(n), we have:

SIZE(h(n)) C SIZE(g(n))

——

n < h(n) < g(n) < 2"n

Any boolean function from {0,1}" to {0,1}
can be decided by circuits of size 2".

Any boolean function from {0,1}" to {0,1}
can be decided by circuits of size 2".

There exists boolean fu

nction

cannot be decided

from {0,1}" to {0,1}

DY CIrc

lits of size 2"/10n.

SIZE(n) < SIZE(n?)

SIZE(n) < SIZE(n?)

Any boolean function from {0,1}%'°¢" to {0,1}
can be decided by circuits of size n.

SIZE(n) < SIZE(n?)

Any boolean function from {0,1}%'°¢" to {0,1}
can be decided by circuits of size n.

There exists boolean function from {0,1}2'°e" to {0,1}
cannot be decided by circuits of size n?/2(logn).

The class NC.

The class NC.

A language L is NCY if L can be decided by a family of
circuits {C,} where C,, has:

- poly(n) size and

- depth O(logn).

The class NC.

A language L is NCY if L can be decided by a family of
circuits {C,} where C,, has:

- poly(n) size and

- depth O(logn).

The class NC is U;,1NCL.

The class AC.

The class AC.

The class AC'is defined similarly to NC' except that
gates are allowed to have unbounded fan-in.

The class AC.

The class AC'is defined similarly to NC' except that
gates are allowed to have unbounded fan-in.

The class AC is U;,oNC.

The class AC.

The class AC'is defined similarly to NC' except that
gates are allowed to have unbounded fan-in.

The class AC is U;,oNC.

NC! CAC! CNCi+!

The class AC.

The class AC'is defined similarly to NC' except that
gates are allowed to have unbounded fan-in.

The class AC is U;,oNC.

NC! CAC! CNCi+!

Parity is in NC*.

Does every problem in P admit an efficient
parallel implementation?

In other words, is P = NC?

P-Completeness

A language is P-complete if it is in P
and every language in P
is log-space reducible to it.

P-Completeness: Consequences

Let L be a P-complete language. Then,

L belongs to NC if and only if P = NC.
L belongs to Lif and only if P = L.

(Lis the class of all languages that can be decided in log-space.)

GOAL

GOAL

SAT cannot be solved in polynomial time
and poly-logarithmic space.

TISP(T(n),S(n)) := the set of languages decided
by a TM M that on every input x:

- takes at most O(T(n)) steps, and,
- uses at most O(S(n)) cells of its read-write tape;

where n := |x].

PLAN

PLAN

NTIME(n) € TISP(n'4,n%2)

PLAN

NTIME(n) € TISP(n'4,n%2)

PLAN

NTIME(n) € TISP(n'4,n%2)

SAT

PLAN

NTIME(n) € TISP(n'4,n%2)

SAT

(Cook-Levin)

ROADMAP

NTIME(n) € TISP(n!-%,n%?)

ROADMAP

NTIME(n) € TISP(n!-?,n%2)

NTIME(n'%) C TISP(n'4,n?)

ROADMAP

NTIME(n) € TISP(n!-?,n%2)

NTIME(n'%) C TISP(n'4,n?)

TISP(n'4,n%) € YL TIME(n®)

ROADMAP

NTIME(n) € TISP(n!-?,n%%)

NTIME(n'%) C TISP(n'4,n?)
TISP(n'4,n%) € YL TIME(n®)

> 2 TIME(n®) € NTIME(n>-°)

ROADMAP

NTIME(n) € TISP(n!-%,n%?)

NTIME(n'%) € TISP(n'4,n?)
TISP(n'4,n%) € YL TIME(n®)

¥, TIME(n8) € NTIME(n*¢)

Sdo]lS -1u

nlZ steps

TISP(n'%,n?) € YoTIME(n®)

The configuration graph has:

1. nodes that require n? bits to describe,
2. an accepting path of length at most n!4 on
inputs that belong to L

TISP(n'%,n?) € YoTIME(n®)

[there exists, for all]

TISP(n'%,n?) € YoTIME(n®)

[there exists, for all]

there exists a path from Cstart to Cend
of length at most n'2.

TISP(n'%,n?) € YoTIME(n®)

[there exists, for all]

there exists a path from Cstart to Cend
of length at most n'2.

TISP(n'%,n?) € YoTIME(n®)

[there exists, for all]

there exists a path from Cstart to Cend
of length at most n'2.

TISP(n'%,n?) € YoTIME(n®)

[there

there exists a path fro
of length at ir

exists, for all]

M Cstart t0 Cend

ost nl2.

there exists a path from Cstart to Cend
via Cq, Co, ..., Ct, Where

forall i,

Ciis reachable from Ci1 in n® steps.

NTIME(n) € TISP(n!-?,n%4)
NTIME(n) € DTIME(n'2)

NTIME(n) € TISP(n!-?,n%4)
NTIME(n) € DTIME(n'2)
¥ >TIME(n®) € NTIME(n?+)

NTIME(n) € TISP(n!-?,n%4)
NTIME(n) € DTIME(n'2)
> TIME(n8) € NTIME(n%*)

[Proof on board]

