BOOLEAN CIRCUITS

(CONTD.)

Karp-Lipton Theorem

If NP \subseteq P_{/poly}, then the polynomial hierarchy collapses to the second level.

 $\mathbf{NP} \subseteq \mathbf{P}_{/\mathsf{poly}} \implies \mathbf{\Pi}_2 \subseteq \mathbf{\Sigma}_2$

$\forall u \in \{0,1\}^{p(n)} \exists v \in \{0,1\}^{q(n)} \varphi(u,v)$

$\mathbf{NP} \subseteq \mathbf{P}_{/\mathsf{poly}} \implies \mathbf{\Pi}_2 \subseteq \mathbf{\Sigma}_2$

$\forall u \in \{0,1\}^{p(n)} \exists v \in \{0,1\}^{q(n)} \varphi(u,v)$

$NP \subseteq P_{/poly} \Rightarrow \Pi_2 \subseteq \Sigma_2$

 $\forall u \in \{0,1\}^{p(n)} \exists v \in \{0,1\}^{q(n)} \phi(u,v)$

There **exists** a <u>polynomial-sized</u>* circuit that can compute the certificate v.

$NP \subseteq P_{/poly} \Rightarrow \Pi_2 \subseteq \Sigma_2$

$$\forall u \in \{0,1\}^{p(n)} \exists v \in \{0,1\}^{q(n)} \varphi(u,v)$$

There **exists** a <u>polynomial-sized</u>* circuit that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most $q^2(n)$ bits.

$\mathbf{NP} \subseteq \mathbf{P}_{/\mathsf{poly}} \implies \mathbf{\Pi}_2 \subseteq \mathbf{\Sigma}_2$

$$\forall u \in \{0,1\}^{p(n)} \exists v \in \{0,1\}^{q(n)} \varphi(u,v)$$

There **exists** a <u>polynomial-sized</u>* circuit that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most $q^2(n)$ bits.

$$\exists w \in \{0, 1\}^{q^{2}(n)} \forall u\{0, 1\}^{p(n)} \varphi(u,)$$

$NP \subseteq P_{/poly} \Rightarrow \Pi_2 \subseteq \Sigma_2$

$$\forall u \in \{0,1\}^{p(n)} \exists v \in \{0,1\}^{q(n)} \varphi(u,v)$$

There **exists** a <u>polynomial-sized</u>* circuit that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most $q^2(n)$ bits.

$$\exists w \in \{0,1\}^{q^2(n)} \forall u\{0,1\}^{p(n)} \phi(u,C_w(\phi,u))$$

(φ)

1 iff there is a
satisfying assignment
that sets x₁ to b₁
and x₂ to 1.

 (ϕ, b_1)

(φ)

1 iff there is a
satisfying assignment
that sets x₁ to b₁
and x₂ to 1.

 $(\mathbf{\phi}, \mathbf{b}_1)$

(φ)

1 iff there is a
satisfying assignment
that sets x₁ to b₁, x₂ to b₂,
and x₃ to 1.

 (ϕ, b_{1}, b_{2})

(φ)

1 iff there is a satisfying assignment that sets **x**₁ **to b**₁ and **x**₂ **to 1**.

 $(\mathbf{\phi},\mathbf{b}_1)$

1 iff there is a
satisfying assignment
that sets x₁ to b₁, x₂ to b₂,
and x₃ to 1.

 (ϕ, b_{1}, b_{2})

A Simple Lower Bound

There exists a boolean function $f: \{0,1\}^n \to \{0,1\}$

that cannot be computed by circuits of size

Space of all boolean functions $f: \{0,1\}^n \to \{0,1\}$

Space of all boolean functions $f: \{0,1\}^n \to \{0,1\}$

 Space of all boolean functions $f: \{0, 1\}^n \to \{0, 1\}$

Space of all boolean functions $f: \{0,1\}^n \to \{0,1\}$

Number of these functions: 2^{2^n}

Space of *all* boolean circuits

Space of all boolean circuits

Number of these circuits: $2^{ct \log t}$

Boolean Functions

Boolean Circuits

$2^{ct\log t}$

Boolean Functions

Boolean Circuits

Let $t = 2^n/n$

$2^{ct\log t}$

Boolean Functions

Boolean Circuits

Let $t = 2^{n}/n(c+1)$

There exists a boolean function $f: \{0,1\}^n \to \{0,1\}$

that cannot be computed by circuits of size

There exists a boolean function $f: \{0,1\}^n \to \{0,1\}$

that cannot be computed by circuits of size $2^{n}/10n$

h(n) < g(n)

For g(n) "bigger" than h(n), we have: SIZE $(h(n)) \subseteq SIZE(g(n))$

h(n) < g(n)

For g(n) "bigger" than h(n), we have: SIZE $(h(n)) \subseteq SIZE(g(n))$

 $h(n) < g(n) < 2^{n}/n$

For g(n) "bigger" than h(n), we have: SIZE $(h(n)) \subseteq SIZE(g(n))$

 $n < h(n) < g(n) < 2^{n}/n$

Any boolean function from {0,1}ⁿ to {0,1} can be decided by circuits of size 2ⁿ.

Any boolean function from {0,1}ⁿ to {0,1} can be decided by circuits of size 2ⁿ.

There exists boolean function from $\{0,1\}^n$ to $\{0,1\}$ cannot be decided by circuits of size $2^n/10n$.

$SIZE(n) \subsetneq SIZE(n^2)$

$SIZE(n) \subsetneq SIZE(n^2)$

Any boolean function from {0,1}^{2logn} to {0,1} can be decided by circuits of size n².
$SIZE(n) \subsetneq SIZE(n^2)$

Any boolean function from $\{0,1\}^{2\log n}$ to $\{0,1\}$ can be decided by circuits of size n^2 .

There exists boolean function from {0,1}^{2logn} to {0,1} cannot be decided by circuits of size n²/2(logn).

Definition

Definition

The class NC.

A language L is NC^d if L can be decided by a family of circuits $\{C_n\}$ where C_n has:

- poly(n) size and
- depth $O(\log^d n)$.

A language L is NC^d if L can be decided by a family of circuits $\{C_n\}$ where C_n has:

- poly(n) size and
- depth O(log^dn).

The class **NC** is $U_{i\geq 1}NC^{i}$.

Definition

The class **AC**ⁱ is defined similarly to **NC**ⁱ except that gates are allowed to have unbounded fan-in.

The class **AC**ⁱ is defined similarly to **NC**ⁱ except that gates are allowed to have unbounded fan-in.

The class **AC** is $U_{i\geq 0}NC^{i}$.

The class **AC**ⁱ is defined similarly to **NC**ⁱ except that gates are allowed to have unbounded fan-in.

The class **AC** is $U_{i\geq 0}NC^{i}$.

 $NC^i \subseteq AC^i \subseteq NC^{i+1}$

The class **AC**ⁱ is defined similarly to **NC**ⁱ except that gates are allowed to have unbounded fan-in.

The class **AC** is $U_{i\geq 0}NC^{i}$.

 $NC^i \subseteq AC^i \subseteq NC^{i+1}$

Parity is in NC¹.

Does every problem in P admit an efficient parallel implementation?

In other words, is P = NC?

P-Completeness

A language is P-complete if it is in P and every language in P is **log-space reducible** to it.

P-Completeness: Consequences

Let L be a P-complete language. Then,

L belongs to NC if and only if P = NC. L belongs to L if and only if P = L.

(L is the class of all languages that can be decided in log-space.)

GOAL

GOAL

SAT <u>cannot</u> be solved in polynomial time *and* poly-logarithmic space.

Definition

TISP(T(n),S(n)) := the set of languages decided by a TM M that on every input x:

- takes at most O(T(n)) steps, and,
- uses at most O(S(n)) cells of its read-write tape;

where n := |x|.

NTIME(n) $\not\subseteq$ **TISP**(n^{1.2}, n^{0.2})

NTIME(n) $\not\subseteq$ **TISP**(n^{1.2}, n^{0.2})

NTIME(n) $\not\subseteq$ **TISP**(n^{1.2}, n^{0.2})

NTIME(n) $\not\subseteq$ **TISP**(n^{1.2}, n^{0.2})

(Cook-Levin)

ROADMAP

NTIME(n) \subseteq **TISP**(n^{1.2}, n^{0.2})

ROADMAP

NTIME(n) \subseteq **TISP**(n^{1.2}, n^{0.2})

NTIME $(n^{10}) \subseteq$ **TISP** (n^{12}, n^2)

ROADMAP

NTIME(n) \subseteq **TISP**(n^{1.2}, n^{0.2})

NTIME $(n^{10}) \subseteq$ **TISP** (n^{12}, n^2)

TISP(n^{12} , n^2) $\subseteq \Sigma_2$ **TIME**(n^8)

TISP(n¹²,n²) ⊆ Σ_2 TIME(n⁸) Σ₂TIME(n⁸) ⊆ NTIME(n^{9.6})

NTIME $(n^{10}) \subseteq$ **TISP** (n^{12}, n^2)

NTIME(n) \subseteq **TISP**(n^{1.2}, n^{0.2})

ROADMAP

TISP(n¹²,n²) ⊆ Σ_2 TIME(n⁸) Σ₂TIME(n⁸) ⊆ NTIME(n^{9.6})

NTIME(n^{10}) \subseteq **TISP**(n^{12} , n^{2})

NTIME(n) \subseteq **TISP**(n^{1.2}, n^{0.2})

ROADMAP

n¹² steps

n²

TISP(n^{12} , n^2) $\subseteq \Sigma_2$ **TIME**(n^8)

 n^2

The configuration graph has:

- 1. nodes that require n^2 bits to describe,
- an accepting path of length at most n¹² on inputs that belong to L

$TISP(n^{12},n^2) \subseteq \sum_2 TIME(n^8)$ [there exists, for all]

$TISP(n^{12},n^2) \subseteq \sum_2 TIME(n^8)$ [there exists, for all]

there exists a path from C_{start} to C_{end} of length at most n^{12} .

$TISP(n^{12},n^2) \subseteq \sum_2 TIME(n^8)$ [there exists, for all]

there exists a path from C_{start} to C_{end} of length at most n^{12} .
$TISP(n^{12},n^2) \subseteq \sum_2 TIME(n^8)$ [there exists, for all]

there exists a path from C_{start} to C_{end} of length at most n^{12} .

$TISP(n^{12},n^2) \subseteq \sum_2 TIME(n^8)$ [there exists, for all]

there exists a path from C_{start} to C_{end} of length at most n^{12} .

there exists a path from C_{start} to C_{end} via $C_1, C_2, ..., C_t$, where for all i, C_i is reachable from C_{i-1} in n⁶ steps. **NTIME**(n) \subseteq **TISP**(n^{1.2},n^{0.2}) **NTIME**(n) \subseteq **DTIME**(n^{1.2}) NTIME(n) ⊆ TISP(n^{1.2},n^{0.2}) NTIME(n) ⊆ DTIME(n^{1.2}) Σ_2 TIME(n⁸) ⊆ NTIME(n^{9.6}) NTIME(n) ⊆ TISP(n^{1.2},n^{0.2}) NTIME(n) ⊆ DTIME(n^{1.2}) Σ_2 TIME(n⁸) ⊆ NTIME(n^{9.6})

[Proof on board]