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Karp-Lipton Theorem

If NP C Pjpoly, then the polynomial
hierarchy collapses to the second level.
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vu € {0,1}P™ Jy € {0, 119 b (u, v)

There exists a polynomial-sized™ circuit
that can compute the certificate v.

*If the size of this circuit is q(n); then it has a representation that uses at most gq(n) bits.

Fw € {0,139 M vuf0, 1P ¢ (1,Co (b, u))
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A Simple Lower Bound

There exists a boolean function
f:{0,1}"™ — {0, 1}

that cannot be computed by circuits of size
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Number of these functions: 22"
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Number of these circuits: 2¢tlogt
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Non-Uniform Hierarchy Theorem

For g(n) “bigger” than h(n), we have:

SIZE(h(n)) C SIZE(g(n))

——

n < h(n) < g(n) < 2"n
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Any boolean function from {0,1}%'°¢" to {0,1}
can be decided by circuits of size n.

There exists boolean function from {0,1}2'°e" to {0,1}
cannot be decided by circuits of size n?/2(logn).
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The class AC'is defined similarly to NC' except that
gates are allowed to have unbounded fan-in.

The class AC is U;,oNC.

NC! CAC! CNCi+!

Parity is in NC*.



Does every problem in P admit an efficient
parallel implementation?

In other words, is P = NC?



P-Completeness

A language is P-complete if it is in P
and every language in P
is log-space reducible to it.




P-Completeness: Consequences

Let L be a P-complete language. Then,

L belongs to NC if and only if P = NC.
L belongs to Lif and only if P = L.

(Lis the class of all languages that can be decided in log-space.)
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SAT cannot be solved in polynomial time
and poly-logarithmic space.







TISP(T(n),S(n)) := the set of languages decided
by a TM M that on every input x:

- takes at most O(T(n)) steps, and,
- uses at most O(S(n)) cells of its read-write tape;

where n := |x].
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(Cook-Levin)
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NTIME(n'%) € TISP(n'4,n?)
TISP(n'4,n%) € YL TIME(n®)

¥, TIME(n8) € NTIME(n*¢)
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nlZ steps

TISP(n'%,n?) € YoTIME(n®)







The configuration graph has:

1. nodes that require n? bits to describe,
2. an accepting path of length at most n!4 on
inputs that belong to L
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[there

there exists a path fro
of length at ir

exists, for all]

M Cstart t0 Cend

ost nl2.

there exists a path from Cstart to Cend
via Cq, Co, ..., Ct, Where

forall i,

Ciis reachable from Ci1 in n® steps.
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NTIME(n) € TISP(n!-?,n%4)
NTIME(n) € DTIME(n'2)
> TIME(n8) € NTIME(n%*)

[Proof on board]



