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1 Leftover Hash Lemma

Let Hy,,m be a family of pairwise independent hash functions from {0,1}" to {0,1}" and € € (0,1) be a
constant.

2m+2

Theorem 1.1. Let S C {0,1}" be such that |S| > *5—. Let A={a € S:h(a) =0} and na = |A|

S| S| 1
P s Py o 2
wah Ana—oml = egn <3

Proof. Let x; be the indicator variable defined as follows

o {1 h(a;) =0

" 10 otherwise
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We note that ng = > x;. Let X denote the sum of random variables x; and u denote E[X] =

=1

Chebyshev’s Inequality, we have,

Var(X)

P’I“{|X _:u| > GM} < EQILLQ

(1)

As the family H is pairwise independent,

k k
Var (Z Xi) = Z Var(x:)

By definition, Var(x;) = E[x?]—(E[xi])? but as x? = x;, we get Var(x;) = E[x:]—(E[x:])?. Thus, we get

1
Var(xi) < Elvi] = Prixi = 1} = o
Plugging this in (1), we get
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as required. O
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2 Toda’s theorem

Theorem 2.1. NP Uco — NP C P#8AT

Proof. This is clear since SAT and co-SAT can be decided by querying the oracle for the number of
satisfying assignments and then checking whether the returned answer is zero. O

The following theorem strengthens the above theorem considerably stating the whole of the polyno-
mial hierarchy can be decided by a polynomial machine with access to an #SAT oracle.

Theorem 2.2 (| Nl ]). PH C p#saT

We prove this theorem in two steps. We show that any problem in the polynomial hierarchy can be
randomly reduced to a problem in € P (defined in section 2.1) , that is PH C BPP®P. This is captured
in the following theorem.

Theorem 2.3. There exists a probabalisitic poly-time algorithm A, which on input 1, a quantified boolean
formula with ¢ quantifiers and a parameter m, outputs a boolean formula ¢ such that

Y is true = Pr{#¢ isodd } >1—-27™
Y is false = Pr{#¢ is odd } <27™
A runs in time poly(m,||).

Then we derandomize this by using a more powerful #P oracle, proving that BPP®P C P#P. Towards
proving the theorems we first look at the properties of the class € P.

2.1 Class @GP

Definition 2.1. A language L C {0,1}* is in )P if there is a poly-time DTM M and a poly-time
computable function ¢ such that

zel «— |{uec {0,130 M(z,u) = 1}| is odd.
Definition 2.2. @ SAT := {¢ : ¢ is a boolean formula and #¢ is odd}
Theorem 2.4. @ SAT is complete for @ P under polynomial time Karp reductions.

Proof. The theorem follows from the fact that VL € NP, L reduces to SAT parsimoniously, due to the
Cook-Levin Theorem. O

Definition 2.3. The D quantifier is defined to be such that @, ¢(x) is true if the number of satisfying
assignments of ¢ is odd.

Remark. We note the following properties of the parity quantifier.
e Identifying true with 1 and false with 0 we have

D o= Y @) (mod2)

z€{0,1}" ze{0,1}™
e Define (¢ - ¥)(z,y) = ¢(x) A(y). Note that, #(¢p - ¢) = #¢ - #4. This gives us,

B o) AP v(w) = D@ ), y)

T,y
e Let #¢(x) =m and #¢(y) = n. We would like to construct « such that #v = m + n. Consider
Y@, y,2) = ((2=0) \ o@) Aly=0) \/((z=1) A\ o) A@=0)
Note that v satisfies the requirement. We denote v = ¢ + .
e Let 1(y) = y1 A -+ Aypn. Define (¢ + 1)(x,y) = ¢(z) + 1(y). Note that #(¢ + 1)(x,y) = #¢ + 1.
Thus, we have
P s(z) = P4+ 1)(=,y)

z,y

Theorem 2.5. co-@P =PP
Proof. This is clear from the fact that ¢ € @ SAT = (¢ + 1) € P SAT. 0




2.2 Valiant-Vazirani Theorem

Definition 2.4. USAT := {¢ : ¢ is a CNF formula and #1 = 1}

Theorem 2.6 (| ). There is a poly-time PTM M such that on input ¢(boolean formula in n
variables), M outputs another formula ¢ such that

¢ € SAT = Pr{i € USAT} > %
¢ ¢ SAT = Pr{y ¢ SAT} =1

Proof. Let S be a the set of all satisfying assignments of input ¢. Note that 0 < |S| < 2™. Say that
2F=2 < || < 2k=1 where k € [2,n+41]. M picks a k randomly from the set {1, ...,n-+1}. With probability
n~!, M will pick k for which 2¥=2 < |S| < 2#~1. M then picks a hash function h uniformly at random
from a pairwise independant family H,, . Let X = |{a € S : h(a) = 0*}| and note that E(X) = |2ik|
Thus, we have % <E[X] < % From the inclusion-exclusion principle we have,

PriX =1]=Pr[X >1]— Pr[X > 2]

Denoting S as {ai,...a;g|}, we defined the following sets as ¢; = {h : h(a;) = 0}. We bound the above
probabilities as follows.
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Consider ¢(z) = ¢(z) A (h(x) = 0). We can find a CNF formula corresponding to h(z) = 0, say 7(x).
Thus, we have a CNF formula v (z) such that

¢ € SAT = Pr{i € USAT} > Sin
¢ ¢ SAT = Pr{i ¢ SAT} =1

as required. O
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