
Lecture 5

Computational Complexity Theory

Abhishek Shetty
Undergraduate Department
Indian Institute of Science

Raghav Malhotra
Undergraduate Department
Indian Institute of Sciece

Instructor
Chandan Saha

Computer Science and Automation
Indian Institute of Science

August 20 2015

1 Ladner’s Theorem

Definition 1.1. NPC = {L ∈ NP | ∀A ∈ NP : A ≤p L}

Definition 1.2. NP− Intermediate = NP \ (P
⋃

NPC)

Definition 1.3. Let B : N→ N. SATB = {ψ01n
B(n) ∈ {0, 1}∗ | ψ ∈ SAT and |ψ| = n}

Lemma 1.1. ∃H : N→ N such that

• H(m) is computable in time O(m3) : ∀m ∈ N

• SATH ∈ P ⇐⇒ ∃c such that ∀m ∈ N : H(m) < c

• SATH /∈ P =⇒ H(m)→∞ as m→∞

Proof. We define H(n) to the be the smallest number k < log log n such that ∀x ∈ {0, 1}∗ with |x| < log n,
Mk decides whether x ∈ SATH within k|x|k steps. In the absence of such a k, we defineH(n) = log log(n).
H is well-defined H(n) depends on strings of atmost size log(n) for which SATH is well defined in terms
of H(i) where i < n. Notice that H is a monotically increasing function.

Assume that SATH ∈ P . There exists a machine M that decides whether x ∈ SATH in c|x|c steps.
We can find i such that Mi = M and i > c. Now we look at n such that log log n > i. From the definition
of H, we have H(n) < i. For log log(n) < i, H(n) < i by definition. Therefore, we have ∀n : H(n) < i.

Assume that ∃c : H(n) < c. Since H is bounded, its range is finite and as its domain is infinite, by
pigeonhole principle we have ∃i : H(n) = i for infinitely many n. From the definition of H, we have
Mi decides SATH in ini steps, else if we have x such that Mi does not decide x in the bound then
∀n : log(n) > |x|, H(n) > i, which is a contradiction.

SATH /∈ P =⇒ H is unbounded. As H is monotonically increasing and unbounded, we have
lim
n→∞

H(n) =∞.

Remark. lim
n→∞

f(n) =∞ ⇐⇒ ∀M ∈ N ∃N0 ∈ N : ∀n > N0, f(n) > M

Theorem 1.2 (Ladner). P 6= NP =⇒ ∃L ∈ NP− Intermediate.

Proof. It can be shown that if P 6= NP, SATH as defined above is in NP− Intermediate. The proof of
the above claim was completed in Lecture 4.

1

2 Oracle Turing Machines

Diagonalization is an extremely powerful proof technique in complexity theory. For clarity, we look at
the two characterizing qualities of a diagonalization argument,

a. Given a string, there is a Turing Machine corresponding to the string and given a Turing Machine,
there exist infinitely many strings representing the Turing Machine.

b. There exists a Universal Turing Machine that can simulate any Turing Machine with only a small
overhead.

To look at the limits of the diagonalization argument, we look at a construction of a new type of
Turing Machine called the Oracle Turing Machine which satisfy the above properties. The Oracle Turing
Machine is given access to an oracle to a language that can be decided within one computation step.

Definition 2.1. A Determinisitic Oracle Turing Machine M with access to an oracle for the language
O ⊂ {0, 1}∗ denoted as MO is defined by the following properties

• The machine has three special states. qquery, qyes, qno, and a special read write tape called the
oracle tape.

• Whenever the machine enters the state qquery , the query x written on the oracle tape is asked to
the oracle which decides O and moves to qyes if x ∈ O and to qno if x /∈ O .

• Regardless of O, the membership query counts as a single step of computation for the oracle
machine.

Definition 2.2. Let O ⊂ {0, 1}∗. PO is the set of all languages which can be decided by a poly-time
TM with access to an oracle that decides O. NPO is the set of all languages decided by similar non
deterministic Turing machines.

Lemma 2.1. Let SAT be the set of all unsatisfiable boolean formulae. Then SAT ∈ PSAT .

Proof. If the machine wants to check whether a formula φ ∈ SAT , it queries the oracle and outputs the
opposite of the oracle’s reply. As the only computational steps are writing down the query on the oracle
tape, querying the oracle and output the answer, the machine runs in polynomial time.

Corollary 2.1.1. NP ∪ Co−NP ⊂ PSAT .

Lemma 2.2. O ∈ P ⇐⇒ PO = P.

Proof. Clearly P ⊂ PO. However if O is polynomial we can replace the oracle O with a poly-time
computation of O. Thus, PO ⊂ P =⇒ PO = P. Conversely, assume O /∈ P. A machine with access to
O can decide O in polynomial time. This implies O ∈ PO. Thus, P 6= PO.

Regardless of what the oracle O is, the set of all Turing machines with access to O satisfy properties
required for diagonlization. This is because we can represent any Turing machine with an oracle as a
string and therefore simulate them on an universal Turing machine. Thus, any result on complexity and
Turing machines which only uses properties a and b mentioned above is true for Turing machines with
access to an arbitrary oracle. Such results are called relativizing results.

Theorem 2.3 (Gill-Solovay-Baker). ∃A,B ⊂ {0, 1}∗ such that NPA = PA and NPB 6= PB.

We prove the Theorem through a set of Lemmas.

Lemma 2.4. Let A ⊂ {0, 1}∗ be defined as
A = EXPCOM = {(M,x, 1n) : DTM M accepts string x within 2n steps}. Then PA = NPA.

Proof. From the definition of the language, it is clear that any language L ∈ EXP can be reduced to A
in polynomial time through the reduction x ∈ L → (M,x, 1n

c

) where nc is such that M decides L in
2n

c

steps. Existence of M and c is clear from the fact that L ∈ EXP. Consider L ∈ EXP. Consider the
polytime Turing Machine S that reduces L to A. Now providing the turing machine with an Oracle to
the language A, SA can decide L while still functioning in polytime. Thus, L ∈ PA which implies that
EXP ⊂ PA.

Given L ∈ NPA, we can simulate its actions though an exponential time machine by enumerating
its non deterministic choices and simulating all its oracles calls as A ∈ EXP. Therefore, NPA ⊂ EXP.
Trivially, we have PA ⊂ NPA and thus we have EXP ⊂ PA ⊂ NPA ⊂ EXP =⇒ PA = NPA.

2

Definition 2.3. Given B ⊂ {0, 1}∗, we define UB = {1n : There is a string of size n in B}.

Lemma 2.5. ∀B ⊂ {0, 1}∗, UB ∈ NPB.

Proof. A string of size n in B is given as a certificate to the machine which tests authenticity through
queries to the oracle that decides B. Equivalently, we nondeterministically guess a string of size n and
query its presence in B using the oracle.

Lemma 2.6. ∃B ⊂ {0, 1}∗ such that UB /∈ PB.

Proof. We construct the language B in stages such that in each stage only the fate of only finitely many
strings is decided. We look at the ith stage of construction and thus inductively build up the language.
We start with the empty language. Let Bk denote the set of strings whose fate has been decided by the
end of stage k.

Stage i - As only finitely many strings have been decided by this stage, we choose n such that
∀x ∈ Bi−1 : n > |x|. Let Mi be the Turing Machine described by the binary expansion of i. Now we run
MB

i on 1n for 2n/10 steps. Whenever Mi queries the oracle for string y ∈ Bi−1. Whenever Mi queries
on a string z /∈ Bi−1, we then decide that the string is not in B. After 2n/10 computational steps if MB

i

accepts 1n then we declare that no string of size n is in B. Else, we choose a string of size n whose fate
is undecided and add it to B. The existence of such a string is guarenteed as MB

i can decide atmost
2n/10 strings of size n and n was chosen such that no string of size n was decided in an earlier stage.
Thus, the language B is constructed inductively by following through on all stages.

Now we prove that UB /∈ PB . Assume there exists an oracle Turing machine MB that runs in time
nc : c ∈ N that decides UB . Since ∀c : nc = o(2n/10), there exist N such that ∀n > N : nc < 2n/10.
Since there are infinitely many strings corresponding to a Turing Machine M, we chose an i > N such
that Mi = M . Since by construction, ∀i : MB

i answers incorrectly on 1n which contradicts our premise.
Thus, UB /∈ PB .

Proof of Theorem 2.3. From Lemma 2.4, we have a language A such that PA = NPA. From Lemmas
2.5 and 2.6, we have a language B such that PB 6= NPB , which proves the theorem.

The above theorem shows that any proof or disproof of P = NP cannot be based just on properties
a and b, as any such result would relativize contradicting the above theorem. Thus, the above theorem
gives an indication that such a proof must depend on details of Turing machines that fail in the presence
of oracles.

3

