Lecture 5
Computational Complexity Theory

Abhishek Shetty Raghav Malhotra
Undergraduate Department Undergraduate Department
Indian Institute of Science Indian Institute of Sciece

Instructor

Chandan Saha
Computer Science and Automation
Indian Institute of Science

August 20 2015

1 Ladner’s Theorem

Definition 1.1. NPC = {L € NP [VA € NP: A <, L}
Definition 1.2. NP — Intermediate = NP\ (P |J NPC)

B(n)

Definition 1.3. Let B: N — N. SATz = {101"°" € {0,1}* | ¢ € SAT and || = n}

Lemma 1.1. 3H : N — N such that
e H(m) is computable in time O(m3) : Vm € N
o SATy € P < 3Fc such that Ym e N: H(m) < ¢
e SATy ¢ P = H(m) — 00 as m — o

Proof. We define H(n) to the be the smallest number k& < loglogn such that Vo € {0,1}* with |z| < logn,
M, decides whether z € SATy within k|x|* steps. In the absence of such a k, we define H(n) = loglog(n).
H is well-defined H(n) depends on strings of atmost size log(n) for which SATy is well defined in terms
of H (i) where i < n. Notice that H is a monotically increasing function.

Assume that SATy € P. There exists a machine M that decides whether z € SATy in c|z|° steps.
We can find ¢ such that M; = M and i > c¢. Now we look at n such that loglogn > i. From the definition
of H, we have H(n) < i. For loglog(n) < i, H(n) < i by definition. Therefore, we have Vn : H(n) < i.

Assume that Jc¢ : H(n) < c. Since H is bounded, its range is finite and as its domain is infinite, by
pigeonhole principle we have 3i : H(n) = ¢ for infinitely many n. From the definition of H, we have
M; decides SATy in in® steps, else if we have = such that M; does not decide z in the bound then
Vn : log(n) > |z|, H(n) > i, which is a contradiction.

SATy ¢ P = H is unbounded. As H is monotonically increasing and unbounded, we have

lim H(n) = occ. O

n—oo

Remark. lim f(n) =00 <= VM € N3INy € N:Vn > Ny, f(n) > M

n—oo

Theorem 1.2 (Ladner). P # NP = 3L € NP — Intermediate.

Proof. Tt can be shown that if P = NP, SATy as defined above is in NP — Intermediate. The proof of
the above claim was completed in Lecture 4. O



2 Oracle Turing Machines

Diagonalization is an extremely powerful proof technique in complexity theory. For clarity, we look at
the two characterizing qualities of a diagonalization argument,

a. Given a string, there is a Turing Machine corresponding to the string and given a Turing Machine,
there exist infinitely many strings representing the Turing Machine.

b. There exists a Universal Turing Machine that can simulate any Turing Machine with only a small
overhead.

To look at the limits of the diagonalization argument, we look at a construction of a new type of
Turing Machine called the Oracle Turing Machine which satisfy the above properties. The Oracle Turing
Machine is given access to an oracle to a language that can be decided within one computation step.

Definition 2.1. A Determinisitic Oracle Turing Machine M with access to an oracle for the language
O C {0,1}* denoted as M© is defined by the following properties

e The machine has three special states. Gguery, Gyess @no, and a special read write tape called the
oracle tape.

e Whenever the machine enters the state gquery , the query x written on the oracle tape is asked to
the oracle which decides O and moves to gyes if € O and to g, if 2 ¢ O .

e Regardless of O, the membership query counts as a single step of computation for the oracle
machine.

Definition 2.2. Let O C {0,1}*. P? is the set of all languages which can be decided by a poly-time
TM with access to an oracle that decides O. NP? is the set of all languages decided by similar non
deterministic Turing machines.

Lemma 2.1. Let SAT be the set of all unsatisfiable boolean formulae. Then SAT € PSAT.

Proof. If the machine wants to check whether a formula ¢ € SAT, it queries the oracle and outputs the
opposite of the oracle’s reply. As the only computational steps are writing down the query on the oracle
tape, querying the oracle and output the answer, the machine runs in polynomial time. O

Corollary 2.1.1. NP UCo—NP c P5AT,
Lemma 2.2. O € P < P9 =P.

Proof. Clearly P C PY. However if O is polynomial we can replace the oracle O with a poly-time
computation of O. Thus, P® ¢ P = P? = P. Conversely, assume O ¢ P. A machine with access to
O can decide O in polynomial time. This implies O € P©. Thus, P # P©. O

Regardless of what the oracle O is, the set of all Turing machines with access to O satisfy properties
required for diagonlization. This is because we can represent any Turing machine with an oracle as a
string and therefore simulate them on an universal Turing machine. Thus, any result on complexity and
Turing machines which only uses properties a and b mentioned above is true for Turing machines with
access to an arbitrary oracle. Such results are called relativizing results.

Theorem 2.3 (Gill-Solovay-Baker). 3A, B  {0,1}* such that NP = PA and NPP # PB.
We prove the Theorem through a set of Lemmas.

Lemma 2.4. Let A C {0,1}* be defined as
A= EXPCOM = {(M,2,1") : DTM M accepts string x within 2" steps}. Then P4 = NP4,

Proof. From the definition of the language, it is clear that any language L € EXP can be reduced to A
in polynomial time through the reduction z € L — (M, z, 1"0) where n° is such that M decides L in
27" steps. Existence of M and ¢ is clear from the fact that L € EXP. Consider L € EXP. Consider the
polytime Turing Machine S that reduces L to A. Now providing the turing machine with an Oracle to
the language A, S* can decide L while still functioning in polytime. Thus, L € P4 which implies that
EXP c PA.

Given L € NP, we can simulate its actions though an exponential time machine by enumerating
its non deterministic choices and simulating all its oracles calls as A € EXP. Therefore, NP4 < EXP.
Trivially, we have P4 ¢ NP“ and thus we have EXP ¢ P4 ¢ NP? ¢ EXP — P4 = NP“. O



Definition 2.3. Given B C {0,1}*, we define Ug = {1" : There is a string of size n in B}.
Lemma 2.5. VB C {0,1}*, Ug € NPZ.

Proof. A string of size n in B is given as a certificate to the machine which tests authenticity through
queries to the oracle that decides B. Equivalently, we nondeterministically guess a string of size n and
query its presence in B using the oracle. O

Lemma 2.6. 3B C {0,1}* such that Up ¢ PE.

Proof. We construct the language B in stages such that in each stage only the fate of only finitely many
strings is decided. We look at the ith stage of construction and thus inductively build up the language.
We start with the empty language. Let By, denote the set of strings whose fate has been decided by the
end of stage k.

Stage i - As only finitely many strings have been decided by this stage, we choose n such that
Vo € Bi—1 :n > |z|. Let M; be the Turing Machine described by the binary expansion of i. Now we run
MZB on 1" for 27 /10 steps. Whenever M; queries the oracle for string y € B,_;. Whenever M; queries
on a string z ¢ B;_1, we then decide that the string is not in B. After 2" /10 computational steps if M7
accepts 1™ then we declare that no string of size n is in B. Else, we choose a string of size n whose fate
is undecided and add it to B. The existence of such a string is guarenteed as MP can decide atmost
2" /10 strings of size n and n was chosen such that no string of size n was decided in an earlier stage.
Thus, the language B is constructed inductively by following through on all stages.

Now we prove that Up ¢ PB. Assume there exists an oracle Turing machine M?Z that runs in time
n® : ¢ € N that decides Up. Since Ve : n® = 0(2"/10), there exist N such that ¥n > N : n® < 2™/10.
Since there are infinitely many strings corresponding to a Turing Machine M, we chose an ¢ > N such
that M; = M. Since by construction, Vi : MiB answers incorrectly on 1™ which contradicts our premise.
Thus, Up ¢ PB. O

Proof of Theorem 2.3. From Lemma 2.4, we have a language A such that P4 = NP?. From Lemmas
2.5 and 2.6, we have a language B such that PP % NP? which proves the theorem. O

The above theorem shows that any proof or disproof of P = NP cannot be based just on properties
a and b, as any such result would relativize contradicting the above theorem. Thus, the above theorem
gives an indication that such a proof must depend on details of Turing machines that fail in the presence
of oracles.



