E0 224: Computational Complexity Theory

Fall 2015

Lecture 7: Aug 27, 2015

Lecturer: Chandan Saha Scribe: Saravanan K

7.1 Recap

In the last lecture we have studied various complexity classes such as **SPACE**, **NSPACE**, **PSPACE**, **NPSPACE**, **L**, **NL**. We also proved (Savitch's theorem) that **NSPACE** $(S(n)) = SPACE(S(n)^2)$, if $S(n) \ge \log n$.

The primary focus of this lecture is about **PSPACE** and **PSPACE** - COMPLETENESS.

Claim 7.1 : SPACE $(S(n)) \subseteq DTIME(2^{O(S(n))})$

Proof: Let $L \in \mathbf{SPACE}(S(n))$ and M be the corresponding Turing Machine that decides L. As we know, we denote the configuration graph for M with input \mathbf{x} as $G_{M,\mathbf{x}}$. Now,

$$|G_{M,\mathbf{x}}| = 2^{O(S(n))}$$
 , where $n = |\mathbf{x}|$

We check whether C_{accept} is reachable from C_{start} in $G_{M,\mathbf{x}}$ using a Deterministic Turing machine that runs in time $2^{O(S(n))}$. Hence $L \in \mathbf{DTIME}(2^{O(S(n))})$.

7.2 PSPACE - Completeness

The question, whether P = PSPACE motivates us to study a new class PSPACE - Complete.

Defn: A language $L \in \{0,1\}^*$ is **PSPACE** – Complete if

- 1. $L \in \mathbf{PSPACE}$ and
- 2. for all $L' \in \mathbf{PSPACE}$, $L' \leq_{p} L$.

Intuitively (Informally), PSPACE - complete problems are the set of hardest problems in PSPACE.

Claim 7.2: If L is PSPACE – complete and $L \in \mathbf{P}$, then $\mathbf{P} = \mathbf{PSPACE}$.

Proof: Since L is **PSPACE** – complete, all problems $L' \in \mathbf{PSPACE}$ reduces to L in polynomial time. Given input \mathbf{x} we map it to an instance $f(\mathbf{x})$, where f is the polynomial function that reduces L' to L. We know $\mathbf{x} \in L'$ iff $f(\mathbf{x}) \in L$ and $L \in \mathbf{P}$. This implies $f(\mathbf{x}) \in L$ can be determined in polynomial time and hence $L' \in \mathbf{P}$.

Example : Let $L = \{(M, \mathbf{x}, 1^m) : M \text{ accepts } \mathbf{x} \text{ using at most } O(m) \text{ space} \}$. Is $L \in \mathbf{PSPACE}\text{-}complete$? **Answer :** YES.

Proof: a) $L \in \mathbf{PSPACE}$: Given input \mathbf{y} of the form $(M, \mathbf{x}, 1^m)$ there exists a universal Turing machine M_U that simulates M on input \mathbf{x} . As M_U uses constant space overhead, $\mathbf{y} \in L$ iff M_U uses O(m) space. Therefore $L \in \mathbf{PSPACE}$.

b) $L \in \mathbf{PSPACE} - complete$: For a language $L^{'} \in \mathbf{PSPACE}$, there exists a Turing machine M that decides $L^{'}$ using p(n) space, where p(n) is a polynomial function. Let \mathbf{x} be the input for M.

We map $\mathbf{x} \mapsto (M, \mathbf{x}, 1^{p(|\mathbf{x}|)})$ in time O(p(|x|)). By definition of L,

$$(M, \mathbf{x}, 1^{p(|\mathbf{x}|)}) \in L \iff \mathbf{x} \in L'$$

Hence the given language L is **PSPACE** – Complete.

7.3 Quantified Boolean Formulae (QBF)

Definition (QBF) QBF is a formula of the form $Q_1x_1 \ Q_2x_2 \ Q_3x_3 \cdots \ Q_nx_n \ \phi(x_1, x_2, x_3, \cdots, x_n)$, where each quantifier Q_i is either \exists or \forall and $\phi(x_1, x_2, \cdots, x_n)$ is a boolean formula.

Example : Consider the QBF $\exists x_1 \forall x_2 \ (\neg x_1 \lor x_1 x_2)$. The given QBF is true, because there exists an $x_1 \ (x_1 = 0)$ that makes the formula true for all $x_2 \ (x_2 \in 0, 1)$.

Remark: A QBF is either true or false.

Definition (TQBF) $TQBF := \{ Set of all TRUE QBF's \}$

Recall the SAT problem. Given a boolean formula $\phi(\mathbf{x})$ with n free variables (\mathbf{x}) , we say $\phi(\mathbf{x})$ is satisfiable (or) $\phi(\mathbf{x})$ belongs to SAT iff, there exists a satisfying assignment for the formula $\phi(\mathbf{x})$. An alternate way of defining the SAT problem using QBF would be,

Definition (SAT) SAT = $\{\exists x_1 \exists x_2 \cdots \exists x_n \phi(x_1, x_2, \cdots, x_n) : \phi(x_1, x_2, \cdots, x_n) \text{ is true } \}$.

7.4 TQBF is PSPACE-complete

Theorem: TQBF is PSPACE - complete

Proof: To prove TQBF is PSPACE - complete, we show the following

- 1. $TQBF \in \mathbf{PSPACE}$
- 2. $L^{'} \leq_{p} TQBF, \forall L^{'} \in \mathbf{PSPACE}$
- 1. TQBF \in **PSPACE**: Consider the QBF $f(\mathbf{x}) = Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \ \phi(x_1, x_2, \cdots, x_n)$. Let the size of $\phi(x_1, x_2, \cdots, x_n)$ be m. Find $f_{|x_1=0}(\mathbf{x})$ and $f_{|x_1=1}(\mathbf{x})$.

If
$$Q_1$$
 is \exists then $f(\mathbf{x}) = f_{|x_1=0}(\mathbf{x}) \lor f_{|x_1=1}(\mathbf{x})$.
If Q_1 is \forall then $f(\mathbf{x}) = f_{|x_1=0}(\mathbf{x}) \land f_{|x_1=1}(\mathbf{x})$.

The space used to compute $f_{|x_1=0}(\mathbf{x})$ can be reused to compute $f_{|x_1=1}(\mathbf{x})$ after storing the output of $f_{|x_1=0}(\mathbf{x})$. Also we require O(m) space to substitute $x_1=0$ and obtain $f_{|x_1=0}(\mathbf{x})$. Therefore we obtain the recursive equation

$$space(n) = space(n-1) + O(m)$$

When n = 0 the QBF is a boolean formula of size O(m) with zero variables (only constants). Computing this requires O(m) space. Therefore the total space required is O(m.n). Hence TQBF \in **PSPACE**.

2. $L^{'} \leq_{p} TQBF$, $\forall L^{'} \in \mathbf{PSPACE}$: Let M be a PSPACE machine that decides $L^{'}$. Clearly M uses m = O(p(n)) space, where p(n) is a polynomial in n. Let $G_{M,\mathbf{x}}$ be the configuration graph corresponding to (M,\mathbf{x}) . We know, $|G_{M,\mathbf{x}}| = 2^{(O(p(n)))}$.

To show $L' \leq_p \text{TQBF}$ we use a polynomial time computable function $\phi(\mathbf{x}) = \psi_{\mathbf{x}}$ such that

$$\mathbf{x} \in L^{'} \iff \phi(\mathbf{x}) \in TQBF$$

For a given input \mathbf{x} we construct a QBF $\psi_{\mathbf{x}}$ such that, $\psi_{\mathbf{x}}$ is true iff the configuration C_{accept} is reachable from C_{start} in $G_{M,\mathbf{x}}$ in at most 2^m steps (meaning M accepts \mathbf{x}).

To define recursion, we use the notation $\psi_{\mathbf{x}}^i(C_1, C_2)$ to denote the reachability of C_2 from C_1 in at most 2^i steps. The recursion on i is as follows:

- a) Base Case: We compute a formula $\psi_{\mathbf{x}}^0(C_1, C_2)$ (is true iff there is an edge from C_1 to C_2) such that $|\psi_{\mathbf{x}}^0(C_1, C_2)| = O(m^2)$. We can compute this formula by doing local computation as we did in the proof of Cook-Levin theorem (using *Claim* 4.4 in [1]).
- b) Induction: By definition $\psi_{\mathbf{x}}^{i}(C_1, C_2)$ is true iff, there exists a configuration C_3 such that there exists paths C_1 to C_3 and C_3 to C_2 of length at most 2^{i-1} . Therefore,

$$\psi_{\mathbf{x}}^{i}(C_{1}, C_{2}) = \exists C_{3} \ \psi_{\mathbf{x}}^{i-1}(C_{1}, C_{3}) \land \psi_{\mathbf{x}}^{i-1}(C_{3}, C_{2})$$

$$(7.1)$$

However, the size of $\psi_{\mathbf{x}}^i$ is twice the size of $\psi_{\mathbf{x}}^{i-1}$. Thus the total size blowup to compute $\psi_{\mathbf{x}}^m(C_{start}, C_{accept})$ would be very high $(O(2^m))$, which is not desirable. Instead we carefully alter the above formula by adding two additional quantifiers such that ψ_{i-1} is used only once instead of twice. It is,

$$\psi_{\mathbf{x}}^{i}(C_{1}, C_{2}) = \exists C_{3} \forall D_{1} \forall D_{2} \ ((D_{1} = C_{1} \land D_{2} = C_{3}) \lor (D_{1} = C_{3} \land D_{2} = C_{2})) \implies \psi_{\mathbf{x}}^{i-1}(D_{1}, D_{2}) \tag{7.2}$$

Equations (7.1) and (7.2) are equivalent. Proof sketch follows: Suppose (7.1) is false. Then for every C_3 , $\psi_{\mathbf{x}}^{i-1}(D_1, D_2)$ cannot be true for both $(D_1, D_2) = (C_1, C_3)$ and $(D_1, D_2) = (C_3, C_2)$, implying (7.2) is false. Suppose (7.2) is false. This means for every C_3 , either when $(D_1, D_2) = (C_1, C_3)$ or when $(D_1, D_2) = (C_3, C_2)$, $\psi_{\mathbf{x}}^{i-1}(D_1, D_2)$ evaluates false. This implies (7.1) evaluates false.

We know $\phi_1 \implies \phi_2$ is equivalent to $\neg \phi_1 \lor \phi_2$. Also $\phi_1 = \phi_2$ is equivalent to $(\phi_1 \land \phi_2) \lor (\neg \phi_2 \land \neg \phi_1)$. Using the above equivalences we can express equation (7.2) in terms of only \land , \lor and \neg . For example $(D_1 = D_2)$ can be expressed as $((D_1 \land D_2) \lor (\neg D_1 \land \neg D_2))$.

The size of ϕ_m is given by $size(\phi_m) = size(\phi_{m-1}) + O(m) = O(m^2)$. This reduction is polynomial time. In fact this is a log-space reduction as well (We will define log-space reduction in the next lecture). Hence $TQBF \in \mathbf{PSPACE} - complete$.

7.5 Certificate Definition of NL

Definition (NL): A language $L \in \mathbf{NL}$, if there is a log-space machine M such that $\mathbf{x} \in L$ iff, $\exists u \in \{0,1\}^{p(|\mathbf{x}|)}$ such that $M(\mathbf{x}, u) = 1$, where u is read-once.

The above definition is equivalent to our previous definition (that is $\mathbf{NL} = \mathbf{NSPACE}(O(\log n))$). Let

 NL_1 be the old definition and NL_2 be our new definition. We prove $NL_1 = NL_2$.

- i) Let $L \in NL_1$. Then there is a NDTM N that decides L such that N uses $O(\log |\mathbf{x}|)$ space on input \mathbf{x} . This implies $L \in NL_2$, because for an input \mathbf{x} , M can simulate N by taking u as the sequence of non deterministic choices along an accepting path. Also M is a log-space machine because N decides \mathbf{x} in log-space.
- ii) Let $L \in NL_2$. Then there exists a log-space machine M such that $\mathbf{x} \in L$ iff $\exists u \in \{0,1\}^{(p|\mathbf{x}|)}$ such that $M(\mathbf{x},u)=1$, where u is read-once. This implies there exists a NDTM N that simulates M as follows: Given input \mathbf{x} , N non-deterministically guesses each bit that the verifier M reads from certificate. If $M(\mathbf{x},u)=1$ then N reaches accepting state, otherwise N halts and outputs 0. Since M uses log-space (and u is read once), N uses log-space. Hence NL_1 is equivalent to NL_2 .

In this lecture we have studied **PSPACE** – completeness. We have also proved that the language TQBF is **PSPACE** – complete. The next lecture will be of similar flavour where we study NL – completeness along with an example (PATH problem). Since NL – completeness uses log-space reduction, we will also learn about *implicit log space computable functions*.

References

[1] Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009