EO0 224: Computational Complexity Theory Fall 2015

Lecture 7: Aug 27, 2015

Lecturer: Chandan Saha Scribe: Saravanan K

7.1 Recap

In the last lecture we have studied various complexity classes such as SPACE, NSPACE, PSPACE,
NPSPACE, L, NL. We also proved (Savitch’s theorem) that NSPACE(S(n)) = SPACE(S(n)?), if
S(n) > logn.

The primary focus of this lecture is about PSPACE and PSPACE - COMPLETENESS.
Claim 7.1 : SPACE(S(n)) C DTIME(20(5(")

Proof: Let L € SPACE(S(n)) and M be the corresponding Turing Machine that decides L. As we
know, we denote the configuration graph for M with input x as Gy x. Now,

|G x| = 20(5(n)) , where n = |x|

We check whether Cyccept is reachable from Ciiqrt in Gar x using a Deterministic Turing machine that runs
in time 2005, Hence L € DTIME(2°(3(™)),

7.2 PSPACE - Completeness

The question, whether P = PSPACE motivates us to study a new class PSPACE — Complete.
Defn : A language L € {0,1}* is PSPACE — Complete if

1. L € PSPACE and
2. for all L' e PSPACE, L' <, L.

Intuitively (Informally), PSPACE — complete problems are the set of hardest problems in PSPACE.

Claim 7.2 : If L is PSPACE — complete and L € P, then P = PSPACE.

Proof : Since L is PSPACE — complete, all problems L' € PSPACE reduces to L in polynomial time.
Given input x we map it to an instance f(x), where f is the polynomial function that reduces L to L. We
know x € L' iff f(x) € L and L € P. This implies f(x) € L can be determined in polynomial time and
hence L' € P.

Example : Let L = {(M,x,1™) : M accepts x using at most O(m) space}. Is L € PSPACE-complete ?
Answer : YES.

Proof : a) L € PSPACE : Given input y of the form (M, x,1™) there exists a universal Turing machine
My that simulates M on input x. As My uses constant space overhead, y € L iff My uses O(m) space.
Therefore L € PSPACE.

7-2 Lecture 7: Aug 27, 2015

b) L € PSPACE —complete : For a language L' € PSPACE, there exists a Turing machine M that decides
L using p(n) space, where p(n) is a polynomial function. Let x be the input for M.
We map x — (M,x, 170xD) in time O(p(|z|)). By definition of L,

(M,x, 1Py e [= xe L

Hence the given language L is PSPACE — Complete.

7.3 Quantified Boolean Formulae (QBF)

Definition (QBF) QBF is a formula of the form Qiz1 Q222 Q323 -+ Qnxy ¢(x1, 22,23, ,2,), Where
each quantifier Q; is either 3 or V and ¢(x1, 2, -+ ,x,) is a boolean formula.

Example : Consider the QBF 3z1Vxy (-1 V z129). The given QBF is true, because there exists an
z1 (z1 = 0) that makes the formula true for all z5 (z2 € 0,1).

Remark : A QBF is either true or false.
Definition (TQBF) TQBF := { Set of all TRUE QBF’s}

Recall the SAT problem. Given a boolean formula ¢(x) with n free variables (x), we say ¢(x) is satis-
fiable (or) ¢(x) belongs to SAT iff, there exists a satisfying assignment for the formula ¢(x). An alternate
way of defining the SAT problem using QBF would be,

Definition (SAT) SAT = {3x13zs - - Jrpd(x1, 22, -+ ,2n) = P(x1, T2, - ,2y) is true }.

7.4 TQBF is PSPACE-complete

Theorem : TQBF is PSPACE — complete
Proof : To prove TQBF is PSPACE — complete, we show the following

1. TQBF € PSPACE
2. L' <, TQBF,V L' ¢ PSPACE

1. TQBF € PSPACE : Cousider the QBF f(x) = Qiz1Q2x2 - Qnxy (1,22, - ,x,). Let the size of
(w1, 22, -+ ,2,) be m. Find fi,,—(x) and fi,,—1(x).

If @y is 3 then f(x) = flz,=0(X) V flz,=1(x).
If Q is V then f(x) = flpy=0(X) A flzy=1(X).

The space used to compute f|,, —o(x) can be reused to compute f,,—1(x) after storing the output of f,, —o(x).
Also we require O(m) space to substiture x; = 0 and obtain f|,, —o(x). Therefore we obtain the recursive
equation

space(n) = space(n — 1) + O(m)

Lecture 7: Aug 27, 2015 7-3

When n = 0 the QBF is a boolean formula of size O(m) with zero variables (only constants). Computing
this requires O(m) space. Therefore the total space required is O(m.n). Hence TQBF € PSPACE.

2. L' <, TQBF,¥ L' ¢ PSPACE : Let M be a PSPACE machine that decides L. Clearly M uses
m = O(p(n)) space, where p(n) is a polynomial in n. Let Gpsx be the configuration graph correspond-
ing to (M, x). We know, |G x| = 2(C@M)).,

To show L' <, TQBF we use a polynomial time computable function ¢(x) = 15 such that
xeL < ¢(x) e TQBF

For a given input x we construct a QBF 1y such that, iy is true iff the configuration Cyccept is reachable
from Cyare in G x in at most 2™ steps (meaning M accepts x).

To define recursion, we use the notation 12 (C1,Cs) to denote the reachability of Cy from C; in at most 2°
steps. The recursion on ¢ is as follows :

a) Base Case : We compute a formula 42(Cy,Cs) (is true iff there is an edge from C; to Cy) such that
[¥2(Cy,Cq)| = O(m?). We can compute this formula by doing local computation as we did in the proof of
Cook-Levin theorem (using Claim 4.4 in [1]).

b) Induction : By definition % (C;,Cs) is true iff, there exists a configuration Cs such that there exists
paths C; to Cs and C3 to Cy of length at most 2°~!. Therefore,

Vi (C1,Cs) = 3C3 YT (Ch, Cs) Apl H(Cs, Co) (7.1)

However, the size of ¢ is twice the size of 9¢~!. Thus the total size blowup to compute ™ (Cytare, Caccept)
would be very high (O(2™)), which is not desirable. Instead we carefully alter the above formula by adding
two additional quantifiers such that ;7 is used only once instead of twice. It is,

YL (O, Cy) = ICYD YDy ((Dy = Cy ADy =C3)V (D = C3 A Dy = Cy)) = (D, Dy) (7.2)

Equations (7.1) and (7.2) are equivalent. Proof sketch follows : Suppose (7.1) is false. Then for every
Cs, ¥ 1(Dy, Dy) cannot be true for both (Dq, Ds) = (C1,C3) and (D1, D3) = (Cs,Cs), implying (7.2) is
false. Suppose (7.2) is false. This means for every Cjs, either when (Dq, D2) = (C1,Cs5) or when (D, D2) =
(C3,Cy), i 1(Dy, D) evaluates false. This implies (7.1) evaluates false.

We know ¢ = ¢9 is equivalent to —¢1 V ¢o. Also ¢1 = @9 is equivalent to (¢1 A d2) V (m¢a A —¢1). Using
the above equivalences we can express equation (7.2) in terms of only A,V and —. For example (D; = Ds)
can be expressed as ((D1 A D2) V (-Dy A =Ds)).

The size of ¢, is given by size(¢n) = size(dm_1) + O(m) = O(m?). This reduction is polynomial time.
In fact this is a log-space reduction as well (We will define log-space reduction in the next lecture). Hence
TQBF € PSPACE — complete.

7.5 Certificate Definition of NL

Definition (NL) : A language L € NL, if there is a log-space machine M such that x € L iff,
Ju € {0, 1}P(1xD) such that M(x,u) = 1, where u is read-once.

The above definition is equivalent to our previous definition (that is NL = NSPACE(O(logn)). Let

7-4 Lecture 7: Aug 27, 2015

N L be the old definition and N Ly be our new definition. We prove NLi = N Lo.

i) Let L € NLj. Then there is a NDTM N that decides L such that N uses O(log|x|) space on input
x. This implies L € N Lo, because for an input x, M can simulate N by taking u as the sequence of non de-
terministic choices along an accepting path. Also M is a log-space machine because NV decides x in log-space.

ii) Let L € NLy. Then there exists a log-space machine M such that x € L iff Ju € {0,1}®*D such
that M(x,u) = 1, where u is read-once. This implies there exists a NDTM N that simulates M as fol-
lows: Given input x, N non-deterministically guesses each bit that the verifier M reads from certificate. If
M (x,u) = 1 then N reaches accepting state, otherwise N halts and outputs 0. Since M uses log-space (and
u is read once), N uses log-space. Hence N L; is equivalent to N Ls.

In this lecture we have studied PSPACE — completeness. We have also proved that the language TQBF
is PSPACE — complete. The next lecture will be of similar flavour where we study NL — completeness
along with an example (PATH problem). Since NL — completeness uses log-space reduction, we will also
learn about implicit log space computable functions.

References

[1] SANJEEV ARORA and BoAZ BARAK, Computational Complexity: A Modern Approach, Cam-
bridge University Press, 2009

