
E0 224: Computational Complexity Theory Fall 2015

Lecture 7: Aug 27, 2015
Lecturer: Chandan Saha Scribe: Saravanan K

7.1 Recap

In the last lecture we have studied various complexity classes such as SPACE, NSPACE, PSPACE,
NPSPACE, L, NL. We also proved (Savitch’s theorem) that NSPACE(S(n)) = SPACE(S(n)2), if
S(n) ≥ log n.

The primary focus of this lecture is about PSPACE and PSPACE - COMPLETENESS.

Claim 7.1 : SPACE(S(n)) ⊆ DTIME(2O(S(n)))

Proof: Let L ∈ SPACE(S(n)) and M be the corresponding Turing Machine that decides L. As we
know, we denote the configuration graph for M with input x as GM,x. Now,

|GM,x| = 2O(S(n)) , where n = |x|

We check whether Caccept is reachable from Cstart in GM,x using a Deterministic Turing machine that runs
in time 2O(S(n)). Hence L ∈ DTIME(2O(S(n))).

7.2 PSPACE - Completeness

The question, whether P = PSPACE motivates us to study a new class PSPACE− Complete.

Defn : A language L ∈ {0, 1}∗ is PSPACE− Complete if

1. L ∈ PSPACE and

2. for all L
′ ∈ PSPACE, L

′ ≤p L.

Intuitively (Informally), PSPACE− complete problems are the set of hardest problems in PSPACE.

Claim 7.2 : If L is PSPACE− complete and L ∈ P, then P = PSPACE.
Proof : Since L is PSPACE − complete, all problems L

′ ∈ PSPACE reduces to L in polynomial time.
Given input x we map it to an instance f(x), where f is the polynomial function that reduces L

′
to L. We

know x ∈ L′
iff f(x) ∈ L and L ∈ P. This implies f(x) ∈ L can be determined in polynomial time and

hence L
′ ∈ P.

Example : Let L = {(M,x, 1m) : M accepts x using at most O(m) space}. Is L ∈ PSPACE-complete ?
Answer : YES.
Proof : a) L ∈ PSPACE : Given input y of the form (M,x, 1m) there exists a universal Turing machine
MU that simulates M on input x. As MU uses constant space overhead, y ∈ L iff MU uses O(m) space.
Therefore L ∈ PSPACE.

7-1

7-2 Lecture 7: Aug 27, 2015

b) L ∈ PSPACE−complete : For a language L
′ ∈ PSPACE, there exists a Turing machine M that decides

L
′

using p(n) space, where p(n) is a polynomial function. Let x be the input for M .

We map x 7→ (M,x, 1p(|x|)) in time O(p(|x|)). By definition of L,

(M,x, 1p(|x|)) ∈ L ⇐⇒ x ∈ L
′

Hence the given language L is PSPACE− Complete.

7.3 Quantified Boolean Formulae (QBF)

Definition (QBF) QBF is a formula of the form Q1x1 Q2x2 Q3x3 · · · Qnxn φ(x1, x2, x3, · · · , xn), where
each quantifier Qi is either ∃ or ∀ and φ(x1, x2, · · · , xn) is a boolean formula.

Example : Consider the QBF ∃x1∀x2 (¬x1 ∨ x1x2). The given QBF is true, because there exists an
x1 (x1 = 0) that makes the formula true for all x2 (x2 ∈ 0, 1).

Remark : A QBF is either true or false.

Definition (TQBF) TQBF := { Set of all TRUE QBF’s}

Recall the SAT problem. Given a boolean formula φ(x) with n free variables (x), we say φ(x) is satis-
fiable (or) φ(x) belongs to SAT iff, there exists a satisfying assignment for the formula φ(x). An alternate
way of defining the SAT problem using QBF would be,

Definition (SAT) SAT = {∃x1∃x2 · · · ∃xnφ(x1, x2, · · · , xn) : φ(x1, x2, · · · , xn) is true }.

7.4 TQBF is PSPACE-complete

Theorem : TQBF is PSPACE− complete

Proof : To prove TQBF is PSPACE− complete, we show the following

1. TQBF ∈ PSPACE

2. L
′ ≤p TQBF , ∀ L′ ∈ PSPACE

1. TQBF ∈ PSPACE : Consider the QBF f(x) = Q1x1Q2x2 · · ·Qnxn φ(x1, x2, · · · , xn). Let the size of
φ(x1, x2, · · · , xn) be m. Find f|x1=0(x) and f|x1=1(x).

If Q1 is ∃ then f(x) = f|x1=0(x) ∨ f|x1=1(x).
If Q1 is ∀ then f(x) = f|x1=0(x) ∧ f|x1=1(x).

The space used to compute f|x1=0(x) can be reused to compute f|x1=1(x) after storing the output of f|x1=0(x).
Also we require O(m) space to substiture x1 = 0 and obtain f|x1=0(x). Therefore we obtain the recursive
equation

space(n) = space(n− 1) +O(m)

Lecture 7: Aug 27, 2015 7-3

When n = 0 the QBF is a boolean formula of size O(m) with zero variables (only constants). Computing
this requires O(m) space. Therefore the total space required is O(m.n). Hence TQBF ∈ PSPACE.

2. L
′ ≤p TQBF , ∀ L′ ∈ PSPACE : Let M be a PSPACE machine that decides L

′
. Clearly M uses

m = O(p(n)) space, where p(n) is a polynomial in n. Let GM,x be the configuration graph correspond-
ing to (M,x). We know, |GM,x| = 2(O(p(n))).

To show L
′ ≤p TQBF we use a polynomial time computable function φ(x) = ψx such that

x ∈ L
′
⇐⇒ φ(x) ∈ TQBF

For a given input x we construct a QBF ψx such that, ψx is true iff the configuration Caccept is reachable
from Cstart in GM,x in at most 2m steps (meaning M accepts x).

To define recursion, we use the notation ψi
x(C1, C2) to denote the reachability of C2 from C1 in at most 2i

steps. The recursion on i is as follows :

a) Base Case : We compute a formula ψ0
x(C1, C2) (is true iff there is an edge from C1 to C2) such that

|ψ0
x(C1, C2)| = O(m2). We can compute this formula by doing local computation as we did in the proof of

Cook-Levin theorem (using Claim 4.4 in [1]).

b) Induction : By definition ψi
x(C1, C2) is true iff, there exists a configuration C3 such that there exists

paths C1 to C3 and C3 to C2 of length at most 2i−1. Therefore,

ψi
x(C1, C2) = ∃C3 ψi−1

x (C1, C3) ∧ ψi−1
x (C3, C2) (7.1)

However, the size of ψi
x is twice the size of ψi−1

x . Thus the total size blowup to compute ψm
x (Cstart, Caccept)

would be very high (O(2m)), which is not desirable. Instead we carefully alter the above formula by adding
two additional quantifiers such that ψi−1 is used only once instead of twice. It is,

ψi
x(C1, C2) = ∃C3∀D1∀D2 ((D1 = C1 ∧D2 = C3) ∨ (D1 = C3 ∧D2 = C2)) =⇒ ψi−1

x (D1, D2) (7.2)

Equations (7.1) and (7.2) are equivalent. Proof sketch follows : Suppose (7.1) is false. Then for every
C3, ψi−1

x (D1, D2) cannot be true for both (D1, D2) = (C1, C3) and (D1, D2) = (C3, C2), implying (7.2) is
false. Suppose (7.2) is false. This means for every C3, either when (D1, D2) = (C1, C3) or when (D1, D2) =
(C3, C2), ψi−1

x (D1, D2) evaluates false. This implies (7.1) evaluates false.

We know φ1 =⇒ φ2 is equivalent to ¬φ1 ∨φ2. Also φ1 = φ2 is equivalent to (φ1 ∧φ2)∨ (¬φ2 ∧¬φ1). Using
the above equivalences we can express equation (7.2) in terms of only ∧,∨ and ¬. For example (D1 = D2)
can be expressed as ((D1 ∧D2) ∨ (¬D1 ∧ ¬D2)).

The size of φm is given by size(φm) = size(φm−1) + O(m) = O(m2). This reduction is polynomial time.
In fact this is a log-space reduction as well (We will define log-space reduction in the next lecture). Hence
TQBF ∈ PSPACE− complete.

7.5 Certificate Definition of NL

Definition (NL) : A language L ∈ NL, if there is a log-space machine M such that x ∈ L iff,
∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1, where u is read-once.

The above definition is equivalent to our previous definition (that is NL = NSPACE(O(log n)). Let

7-4 Lecture 7: Aug 27, 2015

NL1 be the old definition and NL2 be our new definition. We prove NL1 = NL2.

i) Let L ∈ NL1. Then there is a NDTM N that decides L such that N uses O(log |x|) space on input
x. This implies L ∈ NL2, because for an input x, M can simulate N by taking u as the sequence of non de-
terministic choices along an accepting path. Also M is a log-space machine because N decides x in log-space.

ii) Let L ∈ NL2. Then there exists a log-space machine M such that x ∈ L iff ∃u ∈ {0, 1}(p|x|) such
that M(x, u) = 1, where u is read-once. This implies there exists a NDTM N that simulates M as fol-
lows: Given input x, N non-deterministically guesses each bit that the verifier M reads from certificate. If
M(x, u) = 1 then N reaches accepting state, otherwise N halts and outputs 0. Since M uses log-space (and
u is read once), N uses log-space. Hence NL1 is equivalent to NL2.

In this lecture we have studied PSPACE− completeness. We have also proved that the language TQBF
is PSPACE − complete. The next lecture will be of similar flavour where we study NL − completeness
along with an example (PATH problem). Since NL − completeness uses log-space reduction, we will also
learn about implicit log space computable functions.

References

[1] Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cam-
bridge University Press, 2009

