E0 224: Computational Complexity Theory

Due Date: 26 September 2016

TOTAL MARKS: 85

1. Let $Low_1 = \{A \in NP : NP^A = NP\}$. Prove that $Low_1 = NP \cap coNP$.

- [4 marks]
- 2. Let $L_1, L_2 \in \mathsf{NP} \cap \mathsf{coNP}$. Let $L_1 \oplus L_2 = \{x : x \text{ is in exactly one of } L_2 \text{ or } L_1\}$. Prove that $L_1 \oplus L_2 \in \mathsf{NP} \cap \mathsf{coNP}$. $NP \cap coNP$.
- 3. Let PARTITION = $\{\{x_i\}_{i=1}^n \text{ such that } x_i \in \mathbb{Z}, \exists S \subset [n] \text{ and } \sum_{i \in S} x_i = \sum_{i \notin S} x_i \}$ Prove that PARTITION is NP-COMPLETE.
- 4. (a) Assuming $P \neq NP$, show that there exists a polynomial time computable function f such that the language $L_1 = \{x : x \in SAT \text{ and } f(|x|) \text{ is even}\}\ \text{and } L_2 = \{x : x \in SAT \text{ and } f(|x|) \text{ is odd}\}$ are NP-INTERMEDIATE. [7 marks, BONUS]
 - (b) If $P \neq NP$, $\exists A, B \in NP$, such that $A \nleq_p B$ and $B \nleq_p A$.

[5 marks]

- 5. Prove that if every unary language in NP is in P, then EXP = NEXP.
- [6 marks]
- 6. Assuming $P \neq NP \cap co-NP$, prove that there exists a NP verifier M such that $L(M) = \{x : \exists y \in P\}$ $\{0,1\}^{p(|x|)}$ such that $M(x,y)=1\}$ is in P but the search problem cannot be solved in polynomial time. [7 marks]
- 7. Prove that 2-SAT is NL-COMPLETE

[8 marks]

- 8. Consider the certificate definition of NL. Define NL' as the class obtained by allowing the head to move back and forth. Prove that NL' = NP. [8 marks]
- 9. Let $polyL = \bigcup_{i \in \mathbb{N}} DSPACE(\log^i(n))$. Prove that $P \neq polyL$.

[8 marks]

- 10. (a) If $L \notin \mathsf{DTIME}(1)$, then any Turing Machine deciding L must take time at least |x| for infinitely many x.
 - (b) Prove that $\mathsf{DSPACE}(o(\log\log(n))) = \mathsf{DSPACE}(1)$.

[10 marks]

11. Let $NP_i = NTIME(n^i)$. Prove that $P \neq NP_i$.

[8 marks]

12. Prove that there exists a language B such that $NP^B \neq co-NP^B$.

- [9 marks]
- 13. Prove that for any computable $f: \mathbb{N} \to \mathbb{N}$ such that $f(n) \geq n$, there exists a computable T, such that for every Turing machine halting in time at most f(T(n)), there is an equivalent Turing machine that halts in time at most T(n). [8 marks, BONUS]