E0 224: Computational Complexity Theory Assignment 3

Due Date: 1 December 2016

TOTAL MARKS: 85

- 1. Prove that any language L that has a PCP verifier using r coins and q adaptive queries, has a PCP verifier using r coins and 2^q non-adaptive queries. [5 marks]
- 2. Prove that there exists an deterministic polytime algorithm which when given a 3CNF formula with exactly 3 variables per clause outputs an assignment that satisfies at least 7/8 of the clauses. [7 marks]
- 3. Let G be an undirected graph. Associate with each edge (v_i, v_j) an indeterminate x_{ij} if i < j. Define the Tutte matrix A with entries $A_{ij} = x_{ij}$ and $A_{ji} = -x_{ij}$ if (v_i, v_j) is an edge with i < j and all other entries are zero.
 - (a) Prove that $det(A) \neq 0$ if and only if G has a perfect matching. [6 marks]
 - (b) Use the above result, to provide a randomized algorithm to check if a graph has a perfect matching. [2 marks]
 - (c) Prove that the rank of the Tutte matrix is twice the size of the maximum matching.

[7 marks]

- 4. Consider a PCP system with proof length poly(n), where the verifier flips $O(\log(n))$ coins but looks at just one bit of the proof. Prove that for any soundness s and completeness c with 0 < s < c < 1, the set of languages with such a proof system is in P. [6 marks]
- 5. Let Q be a probability mass function on $\{0,1\}^n$ with $H_{\infty}(Q) = b$, where $H_{\infty}(Q) = -\log(\max_x Q(x))$. Let $G: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^l$ be a family of pairwise independent hash functions. Let x be chosen according to Q and s be chosen uniformly, then prove that the distribution of F(x,s) = (s,G(s,x)) is $2^{-(b-l)/2}$ close to uniform i.e. $\frac{1}{2}\sum_{y\in\{0,1\}^{k+l}}|\Pr[F(s,x)=y]-2^{-(l+k)}| \leq 2^{-(b-l)/2}$.

Hint: Consider the collision probability of P in relation to $||P||_2$, where $||P||_2 = \left(\sum P(x)^2\right)^{1/2}$ [8 marks]

- 6. Let $r(n) = o(\log(n))$, where n denotes the size of the input.
 - (a) If $SAT \in PCP(r(n), 1)$, then P = NP.

[7 marks]

(b) $NP \subseteq PCP(r(n), r(n))$, then P = NP.

[9 marks, BONUS]

7. (a) Prove that finding the *n*th order partial derivatives of a polynomial is #P-Hard, where the input polynomial is given in the form $\prod_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{j}$. Specifically, consider [5 marks]

$$\frac{\partial^n}{\partial x_1 \dots \partial x_n} \left[\prod_{i=1}^n \sum_{j=1}^n a_{ij} x_j \right]$$

where a_{ij} are integers.

(b) Prove that #2-SAT is #P-complete.

[8 marks]

- 8. (a) Define $\oplus PERM = \{A | A \text{ is an } m \times m \text{ integer matrix and } perm(A) \text{ is odd.} \}$ Prove that $\oplus PERM$ is in P. [5 marks]
 - (b) Prove that for any $n \times n$ matrix A,

[6 marks]

$$perm(A) = \sum_{S \subseteq [n]} (-1)^{n-|S|} \prod_{i=1}^{n} \sum_{j \in S} A_{ij}$$

Use this to provide an algorithm to compute the permanent in time $2^n poly(n)$.

9. If $\mathsf{P} = \mathsf{NP}$, prove that for all $f \in \#\mathsf{P}$ there exists a deterministic polytime algorithm that approximates f to within a factor of $1 + \epsilon$ for each $\epsilon > 0$.

[8 marks]

10. Prove that the class PP is closed under complementation and unions.

[5 marks]

Practice Problems

- 1. Prove that for each $L \in AC^0$, there is a depth three circuit of size $n^{poly(\log(n))}$ decides the language on 1 1/poly(n) inputs and has the following structure: It has a \oplus gate on top and the other gates are \wedge and \vee and have fan in $poly(\log(n))$.
- 2. Let H_n be the hypercube $\{0,1\}^n$. Prove that every subset of size 2^{n-1} has at least 2^{n-1} edges leaving from it. Also, prove that if a subset S of size 2^{n-1} has exactly 2^{n-1} edges leaving from it, then there is an i and a $\beta \in \{0,1\}$ such that $S = \{x | x_i = \beta\}$.