E0 224: Computational Complexity Theory Indian Institute of Science Assignment 2

Due date: Nov 2, 2017 Total points: 60

- 1. (4 marks) Show that there is a decidable language in P/poly that is not in P.
- 2. (7 marks) Prove that logspace uniform NC¹ is contained in L.
- 3. (9 marks) Show that we can add two n bit numbers using a bounded fan-in boolean circuit of depth $O(\log n)$ and size $n^{O(1)}$. Such a circuit has n+1 output gates.
- 4. (10 marks)
 - (a) (3 marks) Show that there exists a boolean function $g:\{0,1\}^m \to \{0,1\}$ that requires a circuit of size $\Omega(\frac{2^m}{m})$ to compute it.
 - (b) (7 marks) A boolean formula is a circuit in which the fan out of every node is at most 1. Let \mathcal{F} be a boolean formula, such that $\operatorname{size}(\mathcal{F}) = s$. Show that there exists a formula \mathcal{F}' of size $s^{O(1)}$ such that \mathcal{F} and \mathcal{F}' compute the same boolean function and $\operatorname{depth}(\mathcal{F}') = O(\log s)$.
- 5. (9 marks) Give a randomized algorithm that takes input two $n \times n$ matrices A and B with integer entries and does the following: If A and B are similar then with high probability the algorithm outputs an $n \times n$ invertible matrix C with rational entries such that $CAC^{-1} = B$; otherwise it outputs 'A not similar to B'. Ensure that your algorithm runs in polynomial time.
- 6. (5 marks) The class probabilistic poly time (PP) is defined as follows: $L \subseteq \{0,1\}^*$ is in PP if there is a probabilistic polynomial time Turing machine M such that

$$\Pr[M(x) = L(x)] > \frac{1}{2}.$$

- (a) (3 points) Show that $NP \subseteq PP$.
- (b) (2 points) Show that if BPP = PP then PH collapses.
- 7. (4 points) Prove that BPP = RP if and only if BPP = ZPP.
- 8. (12 points) Let \mathbb{F}_p be a finite field of size p (a prime), and $\mathbb{F}_p^{n \times n}$ be the set of all $n \times n$ matrices with entries from \mathbb{F}_p . Assume p > n. The permanent of a matrix $M = (m_{ij})_{i,j \in [n]} \in \mathbb{F}_p^{n \times n}$, denoted by $\operatorname{Perm}_n(M)$, is defined as

$$\operatorname{Perm}_n(M) = \sum_{\sigma \in S_n} \prod_{i \in [n]} m_{i\sigma(i)}.$$

Suppose \mathcal{A} is an algorithm that on input $M \in \mathbb{F}_p^{n \times n}$ outputs $\operatorname{Perm}_n(M)$ correctly for all but $\frac{1}{n^3}$ fraction of input matrices in $\mathbb{F}_p^{n \times n}$. Using \mathcal{A} as a subroutine, design an algorithm \mathcal{B} that outputs $\operatorname{Perm}_n(M)$ correctly on *every* input $M \in \mathbb{F}_p^{n \times n}$, with probability at least $1 - \frac{1}{2^n}$. The running time of \mathcal{B} (modulo subroutine calls to \mathcal{A}) should be polynomial in $\log p$ and n.