E0 224: Computational Complexity Theory Indian Institute of Science Assignment 3

Due date: Dec 5, 2017 Total points: 50

1. (8 marks)

(a) A boolean formula ϕ is a 3 DNF if ϕ can be written as $\phi = m_1 \vee m_2 \vee \cdots \vee m_r$, $r \in \mathbb{N}$, where the *i*-th term $m_i = (x_{i1} \wedge x_{i2} \wedge x_{13})$ has at most 3 literals for $i \in \{1, \ldots, r\}$. Let

$$#3DNF : {\phi \mid \phi \text{ is a 3 DNF}} \to \mathbb{N},$$

where $\#3DNF(\phi)$ is the number of satisfying assignments of ϕ . Show that if $\#3DNF \in FP$ then P = NP.

(b) Give a polynomial time algorithm that checks whether a given bipartite graph G=(V,E) is contained in \oplus Perfect Matchings, where \oplus Perfect Matchings is the set of all bipartite graphs having odd number of perfect matchings.

2. (9 marks)

Show that the following problem is #P complete.

Imperfect Matching:

Input: Bipartite graph G = (V, E), where |V| = 2m and each partition has m vertices.

Output: Number of matchings (not necessarily perfect) in G.

3. (7 marks)

Show that if there is a polynomial time algorithm that approximates #CY-CLE within a factor $\frac{1}{2}$ then P=NP.

- 4. Let $r(n) = o(\log n)$. Show the following
 - (a) (5 marks) If SAT $\in PCP(r(n), 1)$ then P = NP.
 - (b) (7 marks) If $NP \subseteq PCP(r(n), r(n))$ then P=NP.
- 5. (6 marks) If P = NP then show for $f \in \#P$ there exists a deterministic polynomial time algorithm that approximates f to within a factor of $1 \pm \epsilon$ for arbitrarily small constant $\epsilon > 0$.
- 6. (8 marks) Consider the following problem: Given a system of linear equations in n with coefficients that are rational numbers, determine the largest subset of equations that are simultaneously satisfiable. Show that there is a constant $\rho < 1$ such that approximating the size of this subset is NP-hard.