E0 224: Computational Complexity Theory Indian Institute of Science Assignment 2

Due date: Dec 15, 2020

Total marks: 55

1. (6 marks) If $S = \{S_1, S_2, ..., S_m\}$ is a collection of subsets of a finite set U, the VC dimension of S, denoted VC(S), is the size of the largest set $X \subseteq U$ such that for every $X' \subseteq X$, there is an *i* for which $S_i \cap X = X'$. (We say that X is *shattered* by S.)

A Boolean circuit C succinctly represents collections S if S_i consists of exactly those elements $x \in U$ for which C(i, x) = 1. Finally,

VC-DIMENSION = $\{ \langle C, k \rangle : C \text{ represents a collection } S \text{ such that } VC(S) \ge k \}.$

Show that VC-DIMENSION $\in \Sigma_3$.

- 2. (9 marks) Prove that a language L is in NC^1 if and only if L is decided by a q(n)-size circuit family $\{C_n\}_{n\in\mathbb{N}}$, where q is a polynomial function and C_n is a Boolean formula for every $n\in\mathbb{N}$.
- 3. (10 marks) Linear programming (LP) is the problem of checking the feasibility of a system of linear inequality constraints over rationals. Prove that every language in P is logspace-reducible to LP. (In other words, LP is P-complete, and so, if LP is in NC, then P = NC.)
- 4. (6+9 marks) Prove that logspace uniform NC^1 is contained in L. Prove that $NL \subseteq NC$.
- 5. (6 marks) Let BPL be the logspace variant of BPP, i.e., a language L is in BPL if there is an $O(\log(n))$ space probabilistic Turing machine M such that $\Pr[M(x) = L(x)] \ge 2/3$. Prove that $\mathsf{BPL} \subseteq \mathsf{P}$.
- 6. (9 marks) Give a randomized algorithm that takes input two $n \times n$ matrices A and B with integer entries and does the following: If A and B are similar, then with high probability the algorithm outputs an $n \times n$ invertible matrix C with rational entries such that $CAC^{-1} = B$; otherwise it outputs 'A not similar to B'. Ensure that your algorithm runs in polynomial time.