E0 224: Computational Complexity Theory Indian Institute of Science Assignment 3

Due date: Jan 15, 2021

Total marks: 50

- 1. (12 marks) Prove the following:
 - (a) (3 marks) Class PP has a complete problem under polynomial time Karp reduction.
 - (b) (4 marks) If $\mathsf{BPP} = \mathsf{PP}$ then PH collapses.
 - (c) (5 marks) PP is closed under complementation.
- 2. (7 marks) Prove that BP.NP is in Σ_3 .
- 3. (9 marks) Prove that $\overline{SAT} \in \mathsf{BP.NP}$ implies $\mathsf{PH} = \Sigma_3$.
- 4. (4 marks) Give a polynomial time algorithm that checks whether a given bipartite graph G = (V, E) is contained in \oplus Perfect Matchings, where \oplus Perfect Matchings is the set of all bipartite graphs having odd number of perfect matchings.
- 5. (6 marks) Prove that for any $n \times n$ matrix $A = (a_{i,j})_{i,j \in [n]}$,

$$\operatorname{perm}(A) = \sum_{S \subseteq [n]} (-1)^{n-|S|} \prod_{i \in [n]} \left(\sum_{j \in S} a_{i,j} \right).$$

Use this to design an algorithm to compute the permanent in time $2^n \cdot \text{poly}(n)$.

6. (4 marks) Consider the following problem: Given an *n*-variate polynomial f in the form $\prod_{i \in [n]} \sum_{j \in [n]} a_{i,j} x_j$, where $a_{i,j}$ are integers, and $e_1, \ldots, e_n \in \mathbb{Z}_{\geq 0}$ s.t. $e_1 + \ldots + e_n = n$, compute

$$\frac{\partial^n f}{\partial x_1^{e_1} \partial x_2^{e_2} \cdots \partial x_n^{e_n}}$$

Prove that the problem is #P-hard.

7. (8 marks) Prove that #2-SAT is #P-complete.