
Computational Complexity Theory

Lecture 1: Intro; Turing machines; Class P

Department of Computer Science,
Indian Institute of Science

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 Example: Is vertex t reachable from vertex s in graph G?

 (…output is YES/NO)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 Example: Find a satisfying assignment of a Boolean

 formula, if it exists.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 c. Counting problem

 Example: Find the number of cycles in a graph

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 c. Counting problem

 d. Optimization problem

 Example: Find a minimum size vertex cover in a graph

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Algorithms are methods for solving problems; they
are studied using formal models of computation, like
Turing machines.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Algorithms are methods for solving problems; they
are studied using formal models of computation, like
Turing machines.

 • a memory with head (like a RAM)
• a finite control (like a processor)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Algorithms are methods for solving problems; they
are studied using formal models of computation, like
Turing machines. (…more later)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational resources (required by models of
computation) can be:

 • Time (bit operations)
• Space (memory cells)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational resources (required by models of
computation) can be:

 • Time (bit operations)
• Space (memory cells)
• Random bits (magic bits: 0 w. p ½ and 1 w.p ½)
• Communication (bit exchanges)

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 • How hard is it to check satisfiability of a Boolean formula?
• What if the formula has exactly one or no satisfying assignment?

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 Space bounded computation.

• How much space is required to check s-t connectivity?

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 Space bounded computation.

 Polynomial Hierarchy.

co-NP NP

P

.

.

.
• How hard is it to check if the largest

independent set in G has size k ?

• How hard is it to check if there is a

circuit of size k that computes the same
Boolean function as a given Boolean
circuit C ?

Circuit Complexity

 The internal workings of an algorithm can be
viewed as a Boolean circuit.

 The size, depth & width of a circuit correspond
to the sequential, parallel & space complexity,
respectively, of the algorithm that it represents.

Circuit Complexity

 The internal workings of an algorithm can be
viewed as a Boolean circuit.

 The size, depth & width of a circuit correspond
to the sequential, parallel & space complexity,
respectively, of the algorithm that it represents.

 Proving P≠NP showing circuit lower bounds.

• We will see lower bounds for restricted classes of circuits.

Randomness in Computation

 Probabilistic complexity classes.

• Does randomization help in improving efficiency?
• Quicksort has O(n log n) expected time but O(n^2) worst

case time.
• Can SAT be solved in polynomial time using randomness?

Theorem (Schoening, 1999): 3SAT can be solved in
randomized O((4/3)n) time.

Counting Complexity

 Counting complexity classes.

• How hard is it to count the number of perfect matchings

in a graph?

• How hard is it to count the number of cycles in a graph?
• Is counting much harder than the corresponding decision

problem?

Hardness of Approximation

 Probabilistically Checkable Proofs (PCPs).

 Hardness of approximation results.

Theorem (Hastad, 1997): If there’s a poly-time algorithm
to compute an assignment that satisfies at least 7/8 + e

fraction of the clauses of an input 3SAT, for any constant
e > 0, then P = NP.

Basic Course Info

 Course title: Computational Complexity Theory

 Credits: 3:1 Instructor: Chandan Saha

 Lectures: Links to pre-recorded videos will be
shared every week.

 Weekly interaction: One hour on Google meet.
Link will be shared soon.

 Primary reference: Computational Complexity – A
Modern Approach by Sanjeev Arora and Boaz Barak.

Basic Course Info

 Prerequisites: Basic familiarity with algorithms;

 Mathematical maturity.

 Grading policy: Three Assignments - 45%

 One ~45 mins presentation - 25%

 One oral exam - 30%

 Course homepage:
 https://www.csa.iisc.ac.in/~chandan/courses/complexity20/home.html

Let’s begin…

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

• Memory tape(s)
• A finite set of rules

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 Turing machines A mathematical way to

 describe algorithms.

• Memory tape(s)
• A finite set of rules

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 (e.g. of a physical realization of a TM is a simple adder)

• Memory tape(s)
• A finite set of rules

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

has a blank symbol

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

known as transition function; it captures the
dynamics of M

Turing Machines: Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

Turing Machines: Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

 Computation.

 A step of computation is performed by applying δ.

 Halting.

 Once the machine enters qhalt it stops computation.

Turing Machines: Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

Turing Machines: Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

 Definition. M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

Turing Machines

 In this course, we would be dealing with

 Turing machines that halt on every input.

 Computational problems that can be solved by Turing
machines.

Turing Machines

 In this course, we would be dealing with

 Turing machines that halt on every input.

 Computational problems that can be solved by Turing
machines.

 Can every computational problem be solved using
Turing machines?

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 A typical input instance:

x2y + 5y3 = 3

x2 + z5 – 3y2 = 0

y2 – 4z6 = 0

Integer solutions for x, y, z?

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

 (Hilbert’s tenth problem, 1900)

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

 Theorem. There doesn’t exist any algorithm (realizable by a
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970)

Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

 Several other computational models can be
simulated by TMs.

Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

 Several other computational models can be
simulated by TMs.

 Possible exception: Quantum machines!

Basic facts about TMs

Turing Machines

 Time constructible functions. A function T:
is time constructible if T(n) ≥ n and there’s a TM that
computes the function that maps x to T(|x|) in
O(T(|x|)) time.

 Examples: T(n) = n2, or 2n, or n log n

in binary

Turing Machines: Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

Turing Machines: Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

 A single tape suffices.

 If a TM M computes f in T(n) time using k tapes then
there’s another TM M’ that computes f in time 5k . T(n)2
using a single tape that is used for input, work and output.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 …simply encode the description of the TM.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 …invalid strings map to a fixed, trivial TM.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 … allow padding with arbitrary number of 0’s

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 α Mα

{0,1} string TM corresponding to α

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 A TM (i.e., its string representation) can be given as
an input to another TM !!

Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

 Physical realization of UTMs are modern day
electronic computers.

Complexity classes
 P and FP

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

 Boolean functions can be naturally identified with
sets of {0,1} strings, also called languages.

Decision Problems

Decision problems Boolean functions Languages

 Definition. We say a TM M decides a language L ⊆ {0,1}*
if M computes fL, where fL(x) = 1 if and only if x ∈ L.

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Deterministic polynomial-time

Complexity Class P : Examples

 Cycle detection (DFS)
 Check if a given graph has a cycle.

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations (Gaussian elimination)

 Given a system of linear equations over check if there exists a

common solution to all the linear equations.

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations

 Perfect matching (Edmonds 1965) (birth of class P)
 Check if a given graph has a perfect matching

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations

 Perfect matching

 Planarity testing (Hopcroft & Tarjan 1974)
 Check if a given graph is planar

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations

 Perfect matching

 Planarity testing

 Primality testing (Agrawal, Kayal & Saxena 2002)

 Check if a number is prime

Polynomial-time Turing Machines

 Definition. A TM M is a polynimial-time TM if there’s a
polynomial function q: such that for every
input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. q(n) = nc for some constant c

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

 One way is to focus on the i-th bit of the output and
make it a decision problem.

 (Is the i-th bit, on input x, 1?)

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

 One way is to focus on the i-th bit of the output and
make it a decision problem.

 Alternatively, we define a class called functional P or
FP.

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

 One way is to focus on the i-th bit of the output and
make it a decision problem.

 We say that a problem or a function f: {0,1}* {0,1}*
is in FP (functional P) if there’s a polynomial-time TM
that computes f.

Complexity Class FP : Examples

 Greatest Common Divisor (Euclid ~300 BC)
 Given two integers a and b, find their gcd.

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG (homework)

 Find the number of paths between two vertices in a directed

 acyclic graph.

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching (Edmonds 1965)
 Find a maximum matching in a given graph

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching

 Linear Programming (Khachiyan 1979, Karmarkar 1984)

Optimize a linear objective function subject to linear (in)equality
constraints

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching

 Linear Programming (Khachiyan 1979, Karmarkar 1984)

Optimize a linear objective function subject to linear (in)equality
constraints

LP doesn’t have a strongly
polynomial-time algorithm.

Homework: Read about the
differences between strongly
poly-time, weakly poly-time and
pseudo poly-time algorithms.

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching

 Linear Programming

 Factoring Polynomials (Lenstra, Lenstra, Lovasz 1982)

 Compute the irreducible factors of a univariate polynomial over

