Computational Complexity Theory

Lecture 10: Parity not in AC°

Department of Computer Science,
Indian Institute of Science

Recap: Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC'if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C, } cn, Where
depth of C, is at most c.(log n)' for every neN.

o NC =uU NC.
ieEN

e PARITY is in NC'! = poly(n)-size Boolean formulas.

Recap: Class AC

o For iENU{0},a language L is in AC! if there

is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_},cn, Where depth of C_ is at most c.(log n)
for every neN.

o AC=U (;A\C‘. (stands for Alternating Class)
° AC € NC*! < AC*! for all i = 0.

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Recap: Class AC

o For iENU{0},a language L is in AC! if there

is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_},cn, Where depth of C_ is at most c.(log n)
for every neN.

° AC = U AC.

i=20

e In this lecture, we’ll show that PARITY is not in ACP°,
i.e., AC° < NC!,

Recap: The Parity function

e PARITY (x|, X5,...,%X,) = X D x, D ... D x,.

e Fact. PARITY (x|, X5, ..., X,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

e Theorem. (Khrapchenko 1971) Any formula computing
PARITY(x,, X5, ..., X,,) has size (n?).

Recap: The Parity function

e PARITY (x|, X5,...,%X,) = X D x, D ... D x,.

e Fact. PARITY (x|, X5, ..., X,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

has depth O(log n) has d'epth O(log n)
e Theorem. (Khrapchenko 1971) Any formula computing
PARITY(x,, X5, ..., X,,) has size (n?).

Recap: The Parity function

e PARITY (x|, X5,...,%X,) = X D x, D ... D x,.

e Fact. PARITY (x|, X5, ..., X,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

o Theorem. (Khrapchenko 1971) Any formula computing
PARITY(x,, X5, ..., X,,) has size (n?).

e Can poly-size constant depth circuits compute
PARITY? No!

Depth 2 circuit for Parity

* Without loss of generality, a depth 2 circuit is either a
DNF or a CNF

e SN

&

literals

* Any Boolean function can be computed by a DNF
(similarly, CNF) with 2" terms (respectively, clauses).

e Can we do better for depth 2 circuits computing
PARITY?

Depth 2 circuit for Parity

* Without loss of generality, a depth 2 circuit is either a
DNF or a CNF

o Any DNF computing PARITY has = 2! terms.

* Proof. Let § be a DNF computing PARITY. Then, every
term in ¢ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false).

Depth 2 circuit for Parity

* Without loss of generality, a depth 2 circuit is either a
DNF or a CNF

o Any DNF computing PARITY has = 2! terms.

* Proof. Let § be a DNF computing PARITY. Then, every
term in ¢ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false). Such a term corresponds to a unique
assignment that makes the term evaluate to |. Terms
corresponding to assignments that set odd number of
variables to | must be present in ¢.

Depth 3 circuit for Parity

o Obs.There’s a 200 size depth 3 circuit for PARITY.

* Proof. x®x®..8x,B..® x4, ®Dx, D ... Dx,
\ J \ J
Y Y
PARITY = y, @ D vy,

» Divide & conquer: Compute y, and =y, by 200" size
DNFs on the x literals. Compute y, © ... @ yy, by a
2000 size CNF on the vy literals. “Attach” the CNF
with the DNFs and “merge” the two middle layers of

V gates.

Depth 3 circuit for Parity

o Obs.There’s a 200 size depth 3 circuit for PARITY.

* Proof. x®x®..8x,B..® x4, ®Dx, D ... Dx,

| J | J
|

I
PARITY = yi @ e ® oy

» Divide & conquer: Compute y, and =y, by 200" size
DNFs on the x literals. Compute y, © ... @ yy, by a
2000 size CNF on the vy literals. “Attach” the CNF
with the DNFs and “merge” the two middle layers of
V gates.

Is the 220 upper bound on the size of depth 3 circuits
computing PARITY tight? “Yes”

Depth d circuit for Parity

o Obs. There’s a exp(n'(¢!) size depth d circuit for
PARITY, where exp(x) = 2.

* Proof sketch. “Divide & conquer” for d-1 levels.
Alternate between CNFs and DNFs. “Attach” the
CNFs and the DNFs appropriately, and then “merge”
the intermediate layers to bring the depth down to d.

o Is the exp(n'/¢-")) upper bound on the size of depth d
circuits computing PARITY tight? “Yes”

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

e Furst, Saxe and Sipser showed a quasi-polynomial
lower bound.

e Ajtai showed an exponential lower bound, but the
bound wasn’t optimal.

* Finally, Hastad showed an optimal lower bound.

Lower bound for depth d circuits

e Theorem.
Any depth d circuit computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Gives a super-polynomial lower bound for depth d
circuits for d up to O(log n/log log n).

* A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

° Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).
On the other hand, we cannot make PARITY evaluate
to a constant by setting less than n variables.

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

° Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

* We'll prove this fact using Hastad’s Switching
lemma. But first let us discuss some structural
simplifications of depth d circuits.

Simplifying depth d circuits

o If f(x,,..., x,) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are %, ..., x, and 7%, ..., 71X

n.

Simplifying depth d circuits

C

If f(x,,..., x,) is computable by a circuit of depth
and size s, then f is also computable by a circuit C of
epth d and size O(s) such that C has no = gates and

t

he inputs to C are x, ..., %, and 7%, ..., X

n.

If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s)“.

Simplifying depth d circuits

o If f(x,,..., x,) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are %, ..., x, and 7%, ..., 71X

o If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s)“.

o If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of V and A
gates with inputs feeding into only the bottom layer.

Simplifying depth d circuits

o If f(x,,..., x,) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are %, ..., x, and 7%, ..., 71X

o If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s)“.

o If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of V and A
gates with inputs feeding into only the bottom layer.

Prove the above facts.

Random restrictions

* A restriction o is a partial assignment to a subset of the
n variables.

e A random restriction o that leaves m variables
alive/unset is obtained by picking a random subset S C
[n] of size n-m and setting every variable in S to 0/
uniformly and independently.

* Let f, denote the function obtained by applying the
restriction o on f.

The Switching Lemma

e Switching lemma. Let f be a t~-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* We can interchange “CNF’ and “DNF” in the above
statement by applying the lemma on —f.

The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* We can interchange “CNF’ and “DNF” in the above
statement by applying the lemma on —f.

» Before proving the lemma, let us see how it is used to
prove lower bound for depth d circuits.

Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PAR
exp(Q4(n'@Ny),where Q,() is hiding a po

* Proof. Bottom-up application of the switc

TY has size
y(d)! factor.

hing lemma.

Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. W.lL.o.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. W.lL.o.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size

exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. W.lL.o.g C is in the simplified form and the

bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)t.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size

exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. W.lL.o.g C is in the simplified form and the

bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)%. So,

Pr[a fan-in > t last layer V gate survives] < s(3/4)"

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size

exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. W.lL.o.g C is in the simplified form and the

bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)%. So,

Pr[a fan-in > t last layer V gate survives] <|s(3/4)"

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size

exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. W.lL.o.g C is in the simplified form and the

bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.
 With probability = | - s(3/4)%, every A gate of the

second-last layer of C;, computes a t-CNF.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. W.lL.o.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.
 With probability = | - s(3/4)%, every A gate of the

second-last layer of C;, computes a t-CNF.

* Let n; be the no. of unset variables after Step 0. By
Chernoff bound, n; = n/4 with probability | — 2-¢M),

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. W.lL.o.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

» Step 0: Pick every variable independently with prob.
/> and set it to 0/ uniformly. C, be the resulting ckt.
 With probability = | - s(3/4)%, every A gate of the

second-last layer of C;, computes a t-CNF.

* Let n; be the no. of unset variables after Step 0. By
Chernoff bound, n; = n/4 with probability | - 2-¢®)

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. # (A gates of the second-last layer of C)) =< s.

o Step |: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (A gates of the second-last layer of C)) =< s.
o Step |: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C, cannot
be expressed as a t-DNF is = s.(|6pt)~.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (A gates of the second-last layer of C)) =< s.
o Step |: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C, cannot
be expressed as a t-DNF is <|s.(| 6pt)".

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. # (A gates of the second-last layer of C)) =< s.

o Step |: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* Replace the t-CNFs by the corresponding t-DNFs.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (A gates of the second-last layer of C)) =< s.

o Step |: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* Replace the t-CNFs by the corresponding t-DNFs.

e Merge the V gates of the second-last layer with the V
gates of the layer above. C, be the resulting ckt.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (A gates of the second-last layer of C)) =< s.
o Step |: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* The no. of V gates of the second-last layer of the
resulting circuit C, equals the no. of V gates of the
third-last layer of C,.So, this no.is = s.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. # (A gates of the second-last layer of C)) =< s.

o Step |: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* Merging reduces the depth to d-|.

o All the gates of the second-last layer of C, compute t-
DNFs with probability = | - s.(l6pt)-.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. # (V gates of the second-last layer of C,) =< s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (V gates of the second-last layer of C,) =< s.
o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

* By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C, cannot
be expressed as a t-CNF is = s.(16pt)-.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (V gates of the second-last layer of C,) =< s.
o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

* By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C, cannot
be expressed as a t-CNF is <|s.(|6pt)-.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (V gates of the second-last layer of C,) =< s.

e Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

* Replace the t-DNFs by the corresponding t-CNFs.

* Merge the A gates of the second-last layer with the A
gates of the layer above. C; be the resulting ckt.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. # (V gates of the second-last layer of C,) =< s.
o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

e The no. of A gates of the second-last layer of the
resulting circuit C; equals the no. of A gates of the
third-last layer of C,.So, this no.is = s ().

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. # (V gates of the second-last layer of C,) =< s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

* Merging reduces the depth to d-2.

o All the gates of the second-last layer of C; compute t-
CNFs with probability = | - s.(16pt)".

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. # (A gates of the second-last layer of C;) < s.

o Step 3: Apply a random restriction o; on the n;
variables that leaves n, = pn; variables alive, where p
is same as before. Continue as before..

Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - s.(d-2)(l6pt)t - 2-%),

e The number of variables alive is p¢?n, = (p9?n)/4.

Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - s.(d-2)(l6pt)t - 2-%),

e The number of variables alive is p¢?n, = (p9?n)/4.

* Observe that by setting t more variables, we can now
fix the value of the circuit. But, recall that the value of
PARITY cannot be fixed by setting < n variables.

Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - s.(d-2)(l6pt)t - 2-%),

e The number of variables alive is p¢?n, = (p9?n)/4.

* Hence,
either | -s.(d-2)(16pt)t- 2% < 0,

or pd2n, < t.

Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.
* Proof. After Step d-2, we are left with a depth 2
circuit, i.e., a t-CNF or a t-DNF with probability =
| - s.(d-2)(l6pt)t - 2-%),
e The number of variables alive is p¢?n, = (p9?n)/4.
* By choosing t = O(n'¢Y) and p = /(160 t), we can
make sure that \
pd?n, > t. <

Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Qy4(n'@N)), where Q,() is hiding a poly(d)-' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| -s.(d-2)(16pt)t - 2-%0),
e The number of variables alive is p¢?n, = (p9?n)/4.
» Therefore, for t = O(n'/(4-D)yand p = 1/(160 t),
| - 5.(d-2)(16pt): - 2-20) < 0,
m) s = exp(Q(n'/dhy),

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* Proof. We'll present a proof due to Razborov.

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* Proof. Let A, be the set of restrictions that keeps ¢
variables alive. Then, |A,| = (}).2".

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* Proof. Let A, be the set of restrictions that keeps ¢
variables alive. Then, |A,| = (,).2"* Let B, S A, be
the set of “bad” restrictions,i.e.,a 0 € A isin B iff
f, can’t be represented as a k-DNF.

* We need to upper bound |B

m,kl .

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* Proof. Let A, be the set of restrictions that keeps ¢
variables alive. Then, |A,| = (,).2"* Let B, S A, be
the set of “bad” restrictions,i.e.,a 0 € A isin B iff
f, can’t be represented as a k-DNF.

* We need to upper bound |B

m,kl'
e This is done by giving an injective map from B, to
A x U where U = {0, }leet+2) |U| = (4t)k,

Proof of the Switching Lemma

e Switching lemma. Let f be a t~-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.
* Proof.Then, |B,, | = (.1,)-2"™" . (4t)“ and so

m-k

IBmil/|An < [(M! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k

Proof of the Switching Lemma

e Switching lemma. Let f be a t~-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* Proof.Then, |B,, | = (.1,)-2"™" . (4t)“ and so
IBmil/|An < [(M! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k

< (m/(n-m))k . 2% (4t)k

= (p/(1-p)) . 2. (4)« (as m = pn)
< pk. 2K, 2K, (4)k (asp<'2)
= (l16pt)«.

Proof of the Switching Lemma

e Switching lemma. Let f be a t~-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr, [f, can’t be represented as a k-DNF] < (16pt)~.

* Proof. Next, we show an injection from B, to A X
U, where U = {0, | }<(logt*2),

A definition and a notation

° A min-term of a function g is a restriction 7
such that g, = |, but no proper sub-restriction of 7
makes g evaluate to |.

o If ¢ can’t be expressed as a k-DNF then g has a
min-term 7 of width > k (i.e., T assigns 0/l values to
more than k variables). ()

A definition and a notation

° A min-term of a function g is a restriction 7
such that g. = |, but no proper sub-restriction of 7

makes g evaluate to |.

o If ¢ can’t be expressed as a k-DNF then g has a
min-term 7 of width > k (i.e., T assigns 0/l values to

more than k variables).

()

o If o is a restriction that assigns 0/| values to
variables in S; € [n] and 7 is a restriction that assigns
O/l values to variables in S, € [n]\S|, then|oon
“composed” restriction that assigns 0/ values to S,

1S, consistent with ¢ and .

7| == width of 1.

is the

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.
* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.

° If o € B, then f, has a min-term of width > k.

m,k

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
° If o € B,

e Amap y from B to A, xU: (Overview)

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. We'll carefully define a sub-
restriction 17’ of 7 of width k.

then f_ has a min-term of width > k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B,

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. We'll carefully define a sub-
restriction 17’ of 7 of width k.

then f_ has a min-term of width > k.
to A, x U: (Overview)

m,k

> Step 2: Using 17, we'll carefully define a restriction p that
assigns 0/ values to the same set of variables as 7.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B to A, xU: (Overview)

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. We'll carefully define a sub-
restriction 17’ of 7 of width k.

then f_ has a min-term of width > k.

m,k

> Step 2: Using 17, we'll carefully define a restriction p that
assigns 0/ values to the same set of variables as 7.

> Step 3: Using 7’, define a u € U. Finally, y(o) := (g°p , u).

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. Order the clauses of f, and order
the = t variables appearing within such a clause.

then f_ has a min-term of width > k.

m,k

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. Order the clauses of f, and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and m(l) the assignment to its
surviving variables made by 7.

nk then f has a min-term of width > k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. Order the clauses of f, and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7. C, be the first surviving clause
in f,..) and 1(2) the assignment to its surviving variables
made by 1.

then f_ has a min-term of width > k.

m,k

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f, of width > k. Order the clauses of f, and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7. C, be the first surviving clause
in f,..) and 1(2) the assignment to its surviving variables
made by 7. Continue like this.. Stop if |[z(l)o...om(r)| = k..

then f_ has a min-term of width > k.

m,k

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
e Obs.f6 €B

e Amap y from B toA , xU:

then f_ has a min-term of width > k.

m,k

> Step l:If |(l)o...om(r)| > k, then “prune” 1(r) by restricting
it to the set of “smallest” variables in C_ so that [i(l)o...om
(r)| = k. Define " := 7(l)o...om(r); |7’| = k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
° If o € B,

e Amap y from B toA , xU:

> Step 2:For i€[r], let S, be the set of variables in the clause C,
that are assigned O/ values by 7z(i). |S;| = |7z(i)|. Let p(i) be the
unigue assignment to the variables in S, that makes the
corresponding literals in C. zero. Define p := p(l)o...op(r).

then f_ has a min-term of width > k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
o If o € B

e Amap y from B toA , xU:

> Step 2:For i€[r], let S, be the set of variables in the clause C,
that are assigned O/ values by 7z(i). |S;| = |7z(i)|. Let p(i) be the
unigue assignment to the variables in S, that makes the
corresponding literals in C. zero. Define p := p(l)o...op(r).

then f_ has a min-term of width > k.

m,k

> 7(i) and p(i) are assighments to the same set of
variables S.. C. remains unsatisfied under p(i).

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B,

e Amap y from B toA , xU:

> Step 3: For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C,) of the variables assigned by p(i)

along with the values assigned to them by 7(i).
cell «

U(l) | e o0 |
v

log t bit index of a variable in C,; that is assigned by p(i)

then f_ has a min-term of width > k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B,

e Amap y from B toA , xU:

> Step 3: For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C,) of the variables assigned by p(i)
along with the values assigned to them by 7(i).

o [- |
¥

0/ value of the variable assigned by 7(i)

then f_ has a min-term of width > k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B,

e Amap y from B toA , xU:

> Step 3: For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C,) of the variables assigned by p(i)
along with the values assigned to them by 7(i).

o [- |
¥

Delimiter bit = | for the first cell; 0 otherwise.

then f_ has a min-term of width > k.

Injection from B_, toA_, x U

m, k

 fis a t-CNF on n variables.

* A, = set of restrictions that keeps ¢ variables alive.
° B, =1{0 EA_ :f, can’t be represented as a k-DNF}.
° If o € B, then f, has a min-term of width > k.

e Amap y from B toA , xU:

> Step 3: For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C,) of the variables assigned by p(i)
along with the values assighed to them by 7z(i). Define u by
concatenating u(l), ..., u(r) in order. Observe that |u| = k(log
t + 2). Finally, y(o) := (g°p , u). (The delimiter bits
make it possible to extract u(i) from u.)

m-k

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(oop , u) which implies y is an injection.

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(oop , u) which implies y is an injection.

o For every i € [r], the first “unsatisfied” clause in
fO'Oﬂ(I)0...07T(i-l)op(i)O...op(r) is C,.

* Proof. Fix an i € [r]. By construction, C, is the first
surviving clause in f .o or)-

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(oop , u) which implies y is an injection.

o Obs™. For every i € [r], the first “unsatisfied” clause in
fO'on(I)0...07T(i-l)op(i)O...op(r) is C,.

* Proof. Fix an i € [r]. By construction, C, is the first
surviving clause in f;.;). ori)- € remains unsatisfied
under p(i) (Remark™). Further, p(i+1),..., p(r) do not

touch any variable of C. Hence, C, is the first

unsatisfied clause in f,..()o or(i1)op(i)e. . op(r)-

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(op ,u) which implies y is an injection.

o Obs™. For every i € [r], the first “unsatisfied” clause in
fO'on(I)0...07T(i-l)op(i)O...op(r) is C,.

e Recovering o from (gop ,u) :

> Pick the first unsatisfied clause in f;, ;). o, This

clause is C, (Obs™). Now by looking at u(l), we can
derive m(l).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(oop , u) which implies y is an injection.

o Obs™. For every i € [r], the first “unsatisfied” clause in
fO'on(I)0...07T(i-l)op(i)O...op(r) is C,.

e Recovering o from (gop ,u) :

> Pick the first unsatisfied clause in f;, ;). o, This

clause is C, (Obs™). Now by looking at u(l), we can
derive 17(1). Construct oom(l)op(2)e...cp(r) from oo

p(1)e...op(r) and m(1).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(oop , u) which implies y is an injection.

o Obs™. For every i € [r], the first “unsatisfied” clause in
fO'on(I)0...07T(i-l)op(i)O...op(r) is C,.

e Recovering o from (gop ,u) :

> Pick the first unsatisfied clause in f;.;(1)o)2)o.. op(r)- THis
clause is C, (Obs™). Now by looking at u(2), we can
derive 1(2). Construct oom(l)om(2)op(3)e...op(r)
from agom(l)op(2)o...0p(r) and 1(2).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(oop , u) which implies y is an injection.

o Obs™. For every i € [r], the first “unsatisfied” clause in
fO'on(I)0...07T(i-l)op(i)O...op(r) is C,.

e Recovering o from (gop ,u) :

» Continuing like this we can construct oom(l)o...om

(r) and also find 7(l), ..., 7(r) in the process. From
here, recovering o is straightforward.

https://sites.math.rutgers.edu/~sk|233/courses/topics-
S|3/lec3.pdf

