. Computational Complexity Theory

Lecture | |: PTMs; Classes BPP. RP and ZPP;
Sipser-Gacs-Lautemann theorem

Department of Computer Science,
Indian Institute of Science

Randomized computation

* So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

* The usefulness of randomness in computation was

realized as early as the [940s when the first
electronic computer, ENIAC, was developed.

Randomized computation

* So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

* The usefulness of randomness in computation was
realized as early as the [940s when the first
electronic computer, ENIAC, was developed.

»The use of statistical methods in a computational
model of a thermonuclear reaction for the ENIAC lead
to the invention of the Monte Carlo methods.

Randomized computation

* So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

* The usefulness of randomness in computation was
realized as early as the [940s when the first
electronic computer, ENIAC, was developed.

* To study randomized computation, we need to give
TMs the power of generating random numbers.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

l

| with probability />
0 with probability />

Randomized computation

e How realistic such a randomized TM model would be

depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

* Examples of pseudo-random number generators are

linear congruential generators and von Neumann’s
middle-square method.

Randomized computation

e How realistic such a randomized TM model would be

depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

* Examples of pseudo-random number generators are

linear congruential generators and von Neumann’s
middle-square method. \

Xy = aX; +c (mod m)

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

* Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

\

Square an n bit number to get a 2n bit
number and take the middle n bits.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

* Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

* To what extent a PRG is adequate is studied under
the topic 'Pseudorandomness’ in complexity theory.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

* Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

* We'll assume that a TM can generate, or has access
to, truly random bits/coins. (We'll touch upon “truly
vs biased random bits” at end of the lecture.)

Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 0, and 0,. At each step of
computation on input x&{0,!}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or O
(reject).

Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 0, and 0,. At each step of
computation on input x&{0,!}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or O
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 0, and 0,. At each step of
computation on input x&{0,!}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or O
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

° PTMs and NTMs are syntatically similar — both
have two transition functions.

Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 0, and 0,. At each step of
computation on input x&{0,!}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or O
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

° But, semantically, they are quite different —
unlike NTMs, PTMs are meant to model realistic
computation devices.

Probabilistic Turing Machines

A probabilistic Turing machine (PTM) M has
two transition functions 0, and 0,. At each step of
computation on input x&{0,!}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or O
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

The above definition allows a PTM M to not
halt on some computation paths defined by its
random choices (unless we explicitly say that M runs
in T(n) time). More on this later when we define ZPF.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x&{0, | }*,

Pr[M(x) = L(x)] = 2/3.

e Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

c>0

e Clearly, P < BPP.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x&{0, | }*,

Pr[M(x) = L(x)] = 2/3.

Success probability

e Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

c>0

e Clearly, P < BPP.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x&{0, | }*,

Pr[M(x) = L(x)] 2

o Definition. A language L is in BPTIME(™n)) if there’s

PTM that decides L in O(T(n)) time.

Remark. The defn of
class BPP is robust. The
e Definition. BPP = U BPTIME (nc), | ks remains unakeered i

c>0 we replace 2/3 by any
constant strictly greater
than (i.e, bounded
o Clearly, P C BPP. away from) 2. We'll

discuss this next.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x&{0, | }*,

Pr[M(x) = L(x)] 2

o Definition. A language L is in BPTIME(

PTM that decides L in O(T(n)) time.

e Definition. BFP = UOBPTIME (n°).

Bounded-error Probabilistic Polynomial-time

e Clearly, P < BPP.

)) if there’s

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e, bounded
away from) 2. We'll
discuss this next.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x&{0, | }*,

Pr[M(x) = L(x)] 2

o Definition. A language L is in BPTIME(
PTM that decides L in O(T(n)) time.

)) if there’s

Remark. Achieving
success probability 2 is
e Definition. BPP = U BPTIME (n¢). [trivial for any language. If

c>0 we replace = 2/3 by > '/
then the corresponding
class is called PF which is

¢ Clearly, P < BPP. (presumably) larger than
BPP. More on PP later.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let [x| = n. Think of M’ that runs M on input x
for m = 4n?c*d times independently. Let b, ...,b,, be

the outputs of these independent executions of M. M’
outputs Majority(b,, ...,b..).

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let |[x| = n & m = 4n?*d, Let y. = | if b, is
correct (i.e., b, = L(x)), otherwise y; = 0. Then M’
outputs incorrectly only if Y =y, +...+y_ =< m/2.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decidec
by a poly-time PTM M s.t|Pr[M(x) = L(x)] =2 2 + |x|*.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let |[x| = n & m = 4n?*d, Let y. = | if b, is
correct (i.e., b, = L(x)), otherwise y, = 0. Then M’
outputs incorrectly only if Y =y, +...+y_ =< m/2.

e E[y;] = Pr[y, = |] = Pr[M(x) = L(x)] = p (say). It’s given
thatp =2 /2 + n. So, it = E[Y] = mp =2 m/2.(1+2n).

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let |[x| = n & m = 4n?*d, Let y. = | if b, is
correct (i.e., b, = L(x)), otherwise y, = 0. Then M’
outputs incorrectly only if Y =y, +...+y_ =< m/2.

e E[y;] = Pr[y, = |] = Pr[M(x) = L(x)] = p (say). It’s given
thatp =2 /2 + n. So, it = E[Y] = mp =2 m/2.(1+2n).

» By Chernoff bound, Pr[Y < (I-8)u] < exp(-(62n)/2),
for any 6 € [0,1]. We’ll now fix the value of 6.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n%<*dp = Y5+ n¢, u = mp = m/2.(1+2n").

o Pr[Y < (I-8)n] < exp(-(8%w)/2), for any & € [0,1].

* M’ outputs incorrectly only if Y = m/2.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n%<*dp = Y5+ n¢, u = mp = m/2.(1+2n").

o Pr[Y < (I-8)n] < exp(-(8%w)/2), for any & € [0,1].

M’ outputs incorrectly only if Y = m/2. If we choose 6
s.t. m/2 < (1-8)pn then Pr[Y <m/2] < Pr[Y < (1-8)pu].

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof m =4n2*4p 25 + n, w=mp 3 m/2.(1+2n).
e Pr[Y = (1-0)u] = exp(-(6°p)/2), for any & € [0,1].
M’ outputs incorrectly only if Y = m/2. If we choose &

s.t./m/2 < (1-8)pu[then Pr[Y < m/2] < Pr[Y < (1-8)p].
* Picking & = 2/(n“+2) is sufficient. Set & = n“.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n%<*dp = Y5+ n¢, u = mp = m/2.(1+2n").

o Pr[Y < (1-8)n] =< exp(-(86%w)/2), and & = nc.

» Therefore, Pr[M’(x) # L(x)] < exp(-(6%n)/2),

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| =
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

+ Proof, @ = 4n27p > ¥ + n<, L= mp = m/2.(142n%

o Pr[Y < (I-8)u] =< exp(-(86%w)/2), and & = n=.

» Therefore, Pr[M’(x) # L(x)] < exp(-(62pn)/2),

<
< exp(-n9).

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, 1 }*,

Pr. €. {01190 [M(x, r) = L(x)] = 2/3.

* 2/3 can be replaced by | — exp(-|x|9) as before.

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, 1 }*,

Pr. €. {01190 [M(x, r) = L(x)] = 2/3.

e Hence, P € BPP € EXP.

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, 1 }*,

Pr [M(x, r) = L(x)] = 2/3.

r € {0, 1390

e Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €5, . (We'll prove this)

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, 1 }*,

Pr [M(x, r) = L(x)] = 2/3.

r € {0, 1390

e Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €5, . (We'll prove this)
* How large is BPP? Is NP € BPP? i.e., is SAT € BPP?

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, 1 }*,

Pr [M(x, r) = L(x)] = 2/3.

r € {0, 1390

e Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €5, . (We'll prove this)
* How large is BPP? Is NP € BPP? i.e., is SAT € BPP?

* Next we show that BPP € P/poly. So, if NP © BPP
then PH = 5 ,.

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, 1 }*,

Pr [M(x, r) = L(x)] = 2/3.

r € {0, 1390

e Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €5, . (We'll prove this)

* Most complexity theorist believe that P = BPP!
(More on this later.)

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prre, o190 [M(X, r) =L(x)] = 1-2-(x*D),

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prre, o190 [M(X, r) =L(x)] = 1-2-(x*D),

e For every x€{0,1}", at most 2-"*! fraction of the r’s
are “bad”. (r_is bad for x_if M(x,r) # L(x)).

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prre, o190 [M(X, r) =L(x)] = 1-2-(x*D),

» For every x€{0,1}", at most 2-"*D fraction of the r’s
are “bad”. (r is bad for x if M(x,r) # L(x)).

o Summing over all x€{0,1}", at most 2".2-"*1) = 15
fraction of the r’s are “bad” for some n-bit string x.

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prre, o190 [M(X, r) =L(x)] = 1-2-(x*D),

e For every x€{0,1}", at most 2-"*! fraction of the r’s
are “bad”. (r is bad for x if M(x,r) # L(x)).

e There’s an ry,€{0,1}9M that is “good” for all x€{0,1}",
i.e., M(x, ry) = L(x) for all xe{0,1}".

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prre, o190 [M(X, r) =L(x)] = 1-2-(x*D),

» For every x€{0,1}", at most 2-"*D fraction of the r’s
are “bad”. (r is bad for x if M(x,r) # L(x)).

e There’s an ry,€{0,1}9M that is “good” for all x€{0,1}",
i.e., M(x, ry) = L(x) for all xe{0,1}".

* By hardwiring this r(, the computation of M(., ry) can
be viewed as a poly(n)-size circuit C. O

Sipser-Gacs-Lautemann theorem

BPP is in PH

e We saw that P € BPP € EXP. But, is BPP € NP ? Not
known!

* Sipser showed BPP © PH, Gacs strengthened it to
BPP € >,], , Lautemann gave a simpler proof.

e Theorem. BPP < >,N[]s,.

BPP is in PH

e We saw that P € BPP € EXP. But, is BPP € NP ? Not
known!

* Sipser showed BPP © PH, Gacs strengthened it to
BPP < >,M[], , Lautemann gave a simpler proof.

e Theorem. BPP < >,N[]s,.

* Proof. Observe that BPP = co-BPP .So, it is
sufficient to show BPP C) ,.

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prec onwo [M(x,r) =L(x)] = 1-27,
e Letn = |X| and m = q(n)

BPP is in PH

e Theorem. BPP C .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prie. 01100 [M(x, r) =L(x)] = |-2X,
e Let n = |x| and m = q(n). Let A, € {0,1}™ such that r €
A, iff M(x,r) = |.Observe that
xel wmp |Af=(l-2m).2M (A is large)
x¢L == |A]|<202m (A, is small).

BPP is in PH

e Theorem. BPP C .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prie. 01100 [M(x, r) =L(x)] = |-2X,
e Let n = |x| and m = q(n). Let A, € {0,1}™ such that r €
A, iff M(x,r) = |.Observe that
xel wmp |Af=(l-2m).2M (A is large)
x¢L == |A]|<202m (A, is small).
o |dea.lf A_is large then there exists a “small” collection
u,..., u {0, 1}"Ms.t iLEJ[k](AX EB\, u) = {0, 1},

bit-wise Xor

BPP is in PH

e Theorem. BPP C .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prie. 01100 [M(x, r) =L(x)] = |-2X,
o Let n = [x| and m = g(n).Let A, € {0,1}™ such that r €
A, iff M(x,r) = |.Observe that
xel wmp |Af=(l-2m).2M (A is large)
x¢L == |A]|<202m (A, is small).
o |dea.lf A_is large then there exists a “small” collection
up, ..., U {01} s.t. U[g @ u) = {0,1}™. No such
coIIectlon exists if |A,| is smaII

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prie. 01100 [M(x, r) =L(x)] = |-2X,
e Let n = |x| and m = q(n). Let A, € {0,1}™ such that r €
A, iff M(x,r) = |.Observe that
xel wmp |Af=(l-2m).2M (A is large)
x¢L == |A]|<202m (A, is small).
o |dea.lf A_is large then there exists a “small” collection
Uy, ..., {0, 1M st. U (A, D u) = {0,I}™ Capture

i€[k]

this property with a) , statement.

BPP is in PH

e Theorem.
e Proof. r e A iff M(x,r) = |.Then
mh (A2 (I =2M).2™ (A is large)

o Set

e Obs. If |A,| = 2".2™ then for every collection u,, ..
U0, 11 U (A D u) & 10,13™.

X E L
X &L

=) |A <2020

k=m/n+ ||

i€[k]

BPPC Y.

(A, is small).

°9

BPP is in PH

e Theorem. BPP C ..
e Proof. r e A iff M(x,r) = |.Then
xel wmp |AfZ(l—-2M).2M (A is large)
x¢&L wmp |Af=s202m (A, is small).
e Set k=m/n + |.

o Obs. If |A,| = 2".2™ then for every collection u,, ...,
U0, 11 U (A D u) & 10,13™.

i€[k]

* Proof. As |A,] = 27.2™, |U (A D uj)| < k2™ <27 for
sufficiently large n. -

BPP is in PH

e Theorem. BPP C .
* Proof. r e A iff M(x,r) = |.Then
xeL wmp |AfzZ(l—-2M)2" (A, is large)

x¢ZL wmp |A|<202M (A, is small).
° Setk=m/n + |[.
o Claim. If [A] = (I — 2M).2™ then there exists a

collection u, ..., u €{0,I}"st. U (A, D u) = {01}

i€[k]

* Let us complete the proof of the theorem assuming
the claim — we’ll proof it shortly.

BPP is in PH

e Theorem. BPP C .
e Proof. r e A iff M(x,r) = |.Then
xeL wmp |AfzZ(l—-2M)2" (A, is large)

x¢&L wmp |A =202 (A, is small).
e Set k=m/n + |.
e Claim. If |[A] = (I — 2™M). 2m then there exists a

collection u, ..., u €{0,I}"st. U (A, D u) = {01}

i€[k]
e The observation and the claim imply the following:

x €L ==3u,...,u.k{0,I}m U(A @ u) ={0,1}m

Xx¢&L =»vu,..., u€&f{0,Il}m LEJ[I](A @ u) < {0,1}™.

BPP is in PH

e Theorem. BPP C .
e Proof. r e A iff M(x,r) = |.Then
xeL wmp |AfzZ(l—-2M)2" (A, is large)

x¢ZL wmp |A|<202M (A, is small).
e Setk=m/n + I.
e Claim. If |[A] = (I — 2™M). 2m then there exists a

collection u, ..., u €{0,I}"st. U (A, D u) = {01}

i€[k]
* The observation and the claim imply the following:

x € L*= 3y,,...,uc€f{0,Il}m U[I](A @ u) ={0,1}™.

BPP is in PH

e Theorem. BPP c > ,.
e Proof. r e A iff M(x,r) = 1.Set k =m/n + I.
xEL & Ju,...,u {0,I}™ U gAXGB u) = {0,1}m

e[l

BPP is in PH

e Theorem. BPP c > ,.
e Proof. r e A iff M(x,r) = 1.Set k =m/n + I.
xEL & Ju, ..., u {0} ngAXGB u) = {0,1}m

i€

xeEL® Ju,...,u {0,1}" Vre{0,I}™ re U (A, D u)

i€[k]

BPP is in PH

e Theorem. BPP c > ,.
e Proof. r e A iff M(x,r) = 1.Set k =m/n + I.
xEL & Ju,...,u {0,I}™ U gAXGB u) = {0,1}m

i€[k

xeEL® Ju,...,u {0,1}" Vre{0,I}™ re U (A, D u)

i€[k]

xeL e Ju,...,u {0,1}" Vre{0,I}™ V [rPu EA]

i€[k]

BPP is in PH

e Theorem. (Sipser-Gacs-Lautemann ‘83) BPP €) ,.
e Proof.|r €A, iff M(x,r) = |.Set k = m/n + I.

xEL & Ju, ..., u {0} gA @ u) ={0,I}m
xeLe Ju,...,u {01} VrE{O 1} re U (AP u)

i€[k]

xeL e Ju,...,u {0,1}" Vre{0,I}™ V [rPu EA]

i€[k]

xEL ®3u,..., u &{0,1}" Vre{0,l}m V[kI]"I(x rdbu)=1

BPP is in PH

e Theorem.

* Proof.
XEL
XEL
XEL
XEL

BPPC Y.

rEA, iff M(x,r) = |.8et k= m/n + I.

o 3U|, ceoy UkE{O
& Ju,...,u€{0,
ﬁfluh.. UkE{O

" UA®) = {01

€[k

M Vvre{0,I}™ re U (A,D u)

i€[k]

M Vre{0,I}™ Vv [ru. e A]

i€[k]

*3u,,..., u {01} Vvre{0,I}" Vv M(x rdbu)=1

i€[k]

e Think of a DTM N that takes input x, u, ..., u., r, and
outputs | iff M(x,riQu,) = | for some i € [k]. Observe
that N is a poly-time DTM.

BPP is in PH

e Theorem.

* Proof.
_ 4 3U|, ceny UkE{O

XE

XeEL
XeL
XeL

e Therefore, L €), .

BPPC ..

r e A, iff M(x,r) = I, |Set k=m/n+ 1.

& Ju,...,u€{0,
“Huh.. UkE{O

" UA®) = {01

i€[k

M Vvre{0,I}™ re U (A,D u)

i€[k]

M Vre{0,I}™ Vv [ru. e A]

i€[k]

®*3Ju,,..., u {01} Vre{0, 1} N(x ur)=1I.

l

u-= {U|, ceey Uk}

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a

collection u,, ..., u,€{0,1}M s.t. E[I](A @ u) = {0,1}™.
* Proof. The proof of this uses the probabilistic method.

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then

Pr, [VrE{O,1}™ r Egl](A @u)] > 0.

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [3r€{0,I}™ r & U %A Gu)] < I.

i€k

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. E[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [3r€{0,1}™ r & (A D u) for every i€ [k]] < I.

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r @D u; € A, for every i€ [k]] < I.

Proof of the Claim

e Claim.

If

AJ = (I - 27).2n

then there exists a

collection u, ..., u €{0,I}"st. U (A, D u) = {01}

i€[k]

e Proof. We'll show if u,, ..

and uniformly at random then
Pr, [Ar€{0,1}™ r @D u; € A, for every i€ [k]] < I.

* Fix an re{0,}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r © u, € A,] = 2™

—

., U, are picked independently

Distributed uniformly inside {0, |}™
as r is fixed and u; is picked
uniformly at random from {0, | }™.

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r @D u; € A, for every i€ [k]] < I.

* Fix an re{0,}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r © u; € A,] =2". Asuy,...,u.are
independent, Pr,, [r @ u; € A, for every i€ [k]] = 27,

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r @D u; € A, for every i€ [k]] < I.

* Fix an re{0,}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r © u; € A,] =2". Asuy,...,u.are
independent, Pr, [r © u; € A, for every i€ [k]] <2™.

k=m/n+ |

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r @D u; € A, for every i€ [k]] < I.

* Fix an re{0,}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r © u; € A,] =2". Asuy,...,u.are
independent, Pr, [r © u; € A, for every i€ [k]] <2™.

* Applying union bound,

Pr, [Ar€{0,1}™ r @ u; € A, for every i€ [k]] < 2m2m

Proof of the Claim

o Claim. If |A,] =2 (I — 2M).2™ then there exists a
collection u,, ..., u,€{0,1}M s.t. kEJ[I](A @ u) = {0,1}™.
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r @D u; € A, for every i€ [k]] < I.

* Fix an re{0,}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r © u; € A,] =2". Asuy,...,u.are
independent, Pr, [r © u; € A, for every i€ [k]] <2™.

* Applying union bound,

Pr, [Ar€{0,1}™ r @ u; € A, for every i€ [k]] < | .

Complete derandomization of BPP ?

e Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

e Theorem.
If there’s a L € DTIME(2°() and a constant ¢ > 0

such that any circuit C_ that decides L(1{0,|}" requires
size 2¢", then BPP = P..

e Lower bounds == Derandomization !

Complete derandomization of BPP ?

e Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

e Theorem.
If there’s a L € DTIME(2°() and a constant ¢ > 0

such that any circuit C_ that decides L(1{0,|}" requires
size 2¢", then BPP = P..

e Lower bounds == Derandomization !

o Caution: Shouldn’t interpret this result as
“randomness is useless’’.

Classes RP co-RP and ZPP

Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

xe€ L == Pr[M(x)=1]=22/3
x¢ L == Pr[M(x)=0]=1I.
e Definition. RP = LJORTIME (n°).

e Clearly, RP € BPP,

Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

x€ L == Pr[M(x)=1]2
x¢ L == Pr[M(x)=0]=

e Definition. PlP = L>JORTIME (n°).

Randomized Poly-time.

e Clearly, RP < BPP,

R

Remark. The defn of class
RP is robust. The class
remains unaltered if we
replace 2/3 by |x|*€ for any
constant ¢ > 0. The succ.
prob. can then be
amplified to |-exp(-|x|9).

Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

xe€ L == Pr[M(x)=1]=22/3
x¢ L == Pr[M(x)=0]=1I.

e Definition. RP = LgORTIME (n°).

e Clearly, RP € BPP. Obs. RP € NFP.

Recall, we don’t know whether BPP € NP .

Class co-RP

o Definition. co-RP ={L: L € RP}.

e Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

xe L == PriMx)=1]=1I
x¢& L == Pr[M(x)=0]=2/3.

e Obs. co-RP € BPP.

Class co-RP

o Definition. co-RP ={L: L € RP}.

e Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

xe L == Pr[Mx)=1]=1I
x¢ L == Pr[M(x)=0]=2/3.
e Obs. co-RP € BPP.

e Is RPMNco-RP in P? Not known!

Class ZPP

e Recall that PTMs are allowed to not halt on some
computation paths defined by its random choices.

* We say that a PTM M has expected running time T(n) if

the expected running time of M on input x is at most
T(n) for all x € {0,1}".

Class ZPP

e Recall that PTMs are allowed to not halt on some
computation paths defined by its random choices.

* We say that a PTM M has expected running time T(n) if

the expected running time of M on input x is at most
T(n) for all x € {0,1}".

° A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts,and M has expected running time O(T(n)).

o ZfP = U ZTIME (n9).

Zero-error Probabilistic Poly-time.

Class ZPP

e Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts,and M has expected running time O(T(n)).

e Definition. ZPP = U ZTIME (n°).
* Problems in ZPP are said to have poly-time Las Vegas

algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms.

e Theorem. ZPP = RPNco-RP < BPP

e Note. If P = BPP then P = ZPP = BPP.

Why truly random bits?

e A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

Why truly random bits?

e A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

o A random bit with Pr[l] = p can be simulated
by a PTM in expected O(|) time if the i-th bit of p can
be computed in poly(i) time.

e There’s a p and a PTM M with access to p-biased
random bits s.t. M decides an undecidable language!

Why truly random bits?

* On the other hand, we can obtain truly random bits
from biased random bits.

° (von-Neumann [951) A truly random bit can be
simulated by a PTM with access to p-biased random
bits in expected O(p~'(I-p)"') time.

