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Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  
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electronic computer, ENIAC, was developed.  

The use of statistical methods in a computational 
model of a thermonuclear reaction for the ENIAC lead 
to the invention of the Monte Carlo methods. 



Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  

 

 To study randomized computation, we need to give 
TMs the power of generating random numbers.  

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 
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middle-square method.  
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Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 
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Square an n bit number to get a 2n bit 
number and take the middle n bits. 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 To what extent a PRG is adequate is studied under 
the topic `Pseudorandomness’ in complexity theory. 

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 We’ll assume that a TM can generate, or has access 
to, truly random bits/coins.  (We’ll touch upon “truly 
vs biased random bits” at end of the lecture.) 

 



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). 
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computation on input x∈{0,1}*, M applies one of 𝛿0 
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 Note. PTMs and NTMs are syntatically similar – both 
have two transition functions.  
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 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note. But, semantically, they are quite different – 
unlike NTMs, PTMs are meant to model realistic 
computation devices.  



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note.  The above definition allows a PTM M to not 
halt on some computation paths defined by its 
random choices (unless we explicitly say that M runs 
in T(n) time). More on this later when we define ZPP. 



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 
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Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 
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PTM that decides L in O(T(n)) time. 
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 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. The defn of 
class BPP is robust. The 
class remains unaltered if 
we replace 2/3 by any 
constant strictly greater 
than (i.e., bounded 
away from) ½. We’ll 
discuss this next. 
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Bounded-error Probabilistic Polynomial-time  



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. Achieving 
success probability ½ is 
trivial for any language. If 
we replace ≥ 2/3 by > ½  
then the corresponding 
class is called PP, which is 
(presumably) larger than 
BPP.  More on PP later.  



Error reduction for BPP 

 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 
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 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 

 Proof. Let |x| = n. Think of M’ that runs M on input x 
for m = 4n2c+d times independently. Let b1, …,bm be 
the outputs of these independent executions of M. M’ 
outputs Majority(b1, …,bm).  
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Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is 
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’ 
outputs incorrectly only if  Y = y1+…+ ym ≤ m/2.  
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that p ≥ ½ + n-c.   So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c). 
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 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given 
that p ≥ ½ + n-c.   So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c). 

 By Chernoff bound,  Pr[Y ≤ (1-𝝳)𝛍]  ≤  exp(-(𝝳2𝛍)/2), 
for any 𝝳 ∈ [0,1].   We’ll now fix the value of 𝝳. 
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 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 

 Proof. m = 4n2c+d, p ≥ ½ + n-c,  𝛍 = mp ≥ m/2.(1+2n-c). 

 Pr[Y ≤ (1-𝝳)𝛍]  ≤  exp(-(𝝳2𝛍)/2),  for any 𝝳 ∈ [0,1]. 

 M’ outputs incorrectly only if  Y ≤ m/2.  

 



Error reduction for BPP 

 Lemma. Let c > 0 be a constant. Suppose L is decided 
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Error reduction for BPP 

 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 

 Proof. m = 4n2c+d, p ≥ ½ + n-c,  𝛍 = mp ≥ m/2.(1+2n-c). 

 Pr[Y ≤ (1-𝝳)𝛍]  ≤  exp(-(𝝳2𝛍)/2),  for any 𝝳 ∈ [0,1]. 

 M’ outputs incorrectly only if  Y ≤ m/2. If we choose 𝝳 
s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].  

 Picking 𝝳 ≤ 2/(nc+2) is sufficient.   Set 𝝳 = n-c. 
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 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
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 Proof. m = 4n2c+d, p ≥ ½ + n-c,  𝛍 = mp ≥ m/2.(1+2n-c). 

 Pr[Y ≤ (1-𝝳)𝛍]  ≤  exp(-(𝝳2𝛍)/2),  and 𝝳 = n-c. 

 

 Therefore,  Pr[M’(x) ≠ L(x)]  ≤  exp(-(𝝳2𝛍)/2), 

                                             ≤  exp(-nd). 

 



Alternative definition of BPP 

 Definition. A language L in BPP if there’s a poly-time 
DTM M(. , .) and a polynomial function q(.) s.t. for 
every x∈{0,1}*,  

                  Pr              [M(x, r) = L(x)] ≥ 2/3. 

 

 2/3 can be replaced by 1 – exp(-|x|d) as before. 

 

 

r ∈R {0,1}q(|x|) 

(Easy Homework) 
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Alternative definition of BPP 

 Definition. A language L in BPP if there’s a poly-time 
DTM M(. , .) and a polynomial function q(.) s.t. for 
every x∈{0,1}*,  

                  Pr              [M(x, r) = L(x)] ≥ 2/3. 

 

 Hence,  P ⊆ BPP ⊆ EXP. 

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this) 

 How large is BPP? Is NP ⊆ BPP?  i.e.,  is SAT ∈ BPP?  

 Next we show that BPP ⊆ P/poly. So, if NP ⊆ BPP 
then PH = ∑2 .   (Karp-Lipton) 
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Alternative definition of BPP 

 Definition. A language L in BPP if there’s a poly-time 
DTM M(. , .) and a polynomial function q(.) s.t. for 
every x∈{0,1}*,  

                  Pr              [M(x, r) = L(x)] ≥ 2/3. 

 

 Hence,  P ⊆ BPP ⊆ EXP. 

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this) 

 

 Most complexity theorist believe that P = BPP! 
(More on this later.) 
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BPP is in P/poly 

 Theorem. (Adleman 1978)  BPP ⊆ P/poly . 

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 
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are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 
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 Theorem. (Adleman 1978)  BPP ⊆ P/poly . 

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 

 

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s 
are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 

 Summing over all x∈{0,1}n, at most 2n.2-(n+1) = ½ 
fraction of the r’s are “bad” for some n-bit string x.  
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 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n, 
i.e., M(x, r0) = L(x) for all x∈{0,1}n.  
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BPP is in P/poly 

 Theorem. (Adleman 1978)  BPP ⊆ P/poly . 

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 

 

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s 
are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n, 
i.e., M(x, r0) = L(x) for all x∈{0,1}n.  

 By hardwiring this r0, the computation of M( . , r0) can 
be viewed as a poly(n)-size circuit C.  (Cook-Levin) 
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Sipser-Gacs-Lautemann theorem 



BPP is in PH 

 We saw that  P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not 
known!  (Yes, people still believe BPP = P.) 

 

 Sipser showed BPP ⊆ PH, Gacs strengthened it to 
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof. 

 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.  

 

 



BPP is in PH 

 We saw that  P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not 
known!  (Yes, people still believe BPP = P.) 

 

 Sipser showed BPP ⊆ PH, Gacs strengthened it to 
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof. 

 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.  

 Proof. Observe that BPP = co-BPP (homework). So, it is 
sufficient to show BPP ⊆ ∑2.  

 

 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-|x| . 

 Let n = |x| and m = q(n). 
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BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-|x| . 

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈ 
Ax iff M(x, r) = 1. Observe that 

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m         (Ax is small). 

 

 

r ∈R {0,1}q(|x|) 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-|x| . 

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈ 
Ax iff M(x, r) = 1. Observe that 

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m         (Ax is small). 

 Idea. If Ax is large then there exists a “small” collection 
u1, …, uk∈{0,1}m s.t.  ∪ (Ax ⊕ ui) = {0,1}m. 

 

r ∈R {0,1}q(|x|) 

i∈[k] 

bit-wise Xor 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-|x| . 

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈ 
Ax iff M(x, r) = 1. Observe that 

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m         (Ax is small). 

 Idea. If Ax is large then there exists a “small” collection 
u1, …, uk∈{0,1}m s.t.  ∪ (Ax ⊕ ui) = {0,1}m. No such 
collection exists if |Ax| is small.  

 

r ∈R {0,1}q(|x|) 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-|x| . 

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈ 
Ax iff M(x, r) = 1. Observe that 

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m         (Ax is small). 

 Idea. If Ax is large then there exists a “small” collection 
u1, …, uk∈{0,1}m s.t.  ∪ (Ax ⊕ ui) = {0,1}m. Capture 
this property with a ∑2 statement. 

 

r ∈R {0,1}q(|x|) 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Then 

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m          (Ax is small). 

 Set k = m/n + 1. 

 Obs. If |Ax| ≤ 2-n.2m then for every collection u1, …, 
uk∈{0,1}m,  ∪  (Ax ⊕ ui)  ⊊  {0,1}m.  

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Then  

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m          (Ax is small). 

 Set k = m/n + 1. 

 Obs. If |Ax| ≤ 2-n.2m then for every collection u1, …, 
uk∈{0,1}m,  ∪  (Ax ⊕ ui)  ⊊  {0,1}m.  

 Proof. As |Ax| ≤ 2-n.2m ,  |∪  (Ax ⊕ ui)| ≤ k.2m-n < 2m for 
sufficiently large n. 

i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Then  

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m          (Ax is small). 

 Set k = m/n + 1. 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 

 Let us complete the proof of the theorem assuming 
the claim – we’ll proof it shortly. 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Then  

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m          (Ax is small). 

 Set k = m/n + 1. 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 The observation and the claim imply the following: 

    x ∈ L       ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

    x ∉ L       ∀u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) ⊊ {0,1}m. 

 

i∈[k] 

i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Then  

            x ∈ L             |Ax| ≥ (1 – 2-n).2m  (Ax is large) 

            x ∉ L             |Ax| ≤ 2-n.2m          (Ax is small). 

 Set k = m/n + 1. 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 The observation and the claim imply the following: 

    x ∈ L       ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m. 

 

i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1. 

x∈L     ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

 
i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1. 

x∈L     ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  r∈ ∪ (Ax⊕ ui) 

 
i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1. 

x∈L     ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  r∈ ∪ (Ax⊕ ui) 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  ∨  [r⊕ui ∈ Ax] 

 

i∈[k] 

i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1. 

x∈L     ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  r∈ ∪ (Ax⊕ ui) 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  ∨  [r⊕ui ∈ Ax] 

x∈L    ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  ∨ M(x, r⊕ui)=1 

 

i∈[k] 

i∈[k] 

i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1. 

x∈L     ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  r∈ ∪ (Ax⊕ ui) 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  ∨  [r⊕ui ∈ Ax] 

x∈L    ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  ∨ M(x, r⊕ui)=1 

 

 Think of a DTM N that takes input x, u1, …, um, r, and 
outputs 1 iff M(x, r⊕ui) = 1 for some i ∈ [k]. Observe 
that N is a poly-time DTM. 

 

i∈[k] 

i∈[k] 

i∈[k] 

i∈[k] 



BPP is in PH 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.  

 Proof.  r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1. 

x∈L     ∃u1, …, uk∈{0,1}m    ∪ (Ax ⊕ ui) = {0,1}m 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  r∈ ∪ (Ax⊕ ui) 

x∈L     ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  ∨  [r⊕ui ∈ Ax] 

x∈L    ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m  N(x, u, r) = 1. 

 

 Therefore,  L ∈ ∑2 . 

 

 

i∈[k] 

i∈[k] 

i∈[k] 

u = {u1, …, uk} 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. The proof of this uses the probabilistic method.  
i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

             Pru [∀r∈{0,1}m  r ∈∪ (Ax⊕ ui)]  >  0 . 

 

i∈[k] 

i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

             Pru [∃r∈{0,1}m  r ∉ ∪ (Ax⊕ ui)]  <  1 . 

 

i∈[k] 

i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ∉ (Ax⊕ ui) for every i∈ [k]]  <  1 . 

 

i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]]  <  1 . 

 

i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]]  <  1 . 

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix 
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n.  

i∈[k] 

Distributed uniformly inside {0,1}m 
as r is fixed and ui is picked 
uniformly at random from {0,1}m. 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]]  <  1 . 

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix 
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are 
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] ≤ 2-kn. 

i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]]  <  1 . 

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix 
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are 
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] < 2-m. 

i∈[k] 

k = m/n + 1 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]]  <  1 . 

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix 
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are 
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] < 2-m. 

 Applying union bound, 

   Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]] < 2m2-m  

i∈[k] 



Proof of the Claim 

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a 
collection u1, …, uk∈{0,1}m s.t.  ∪  (Ax ⊕ ui)  =  {0,1}m. 

 Proof. We’ll show if u1, …, uk are picked independently 
and uniformly at random then  

    Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]]  <  1 . 

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix 
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are 
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] < 2-m. 

 Applying union bound, 

   Pru [∃r∈{0,1}m  r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .  

i∈[k] 



Complete derandomization of BPP ? 

 Can the Sipser-Gacs-Lautemann theorem be 
strengthened? How low in the PH does BPP lie ? 

 

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)   
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0 
such that any circuit Cn that decides L∩{0,1}n requires 
size 2𝜀n, then BPP = P . 

 

 Lower bounds           Derandomization ! 



Complete derandomization of BPP ? 

 Can the Sipser-Gacs-Lautemann theorem be 
strengthened? How low in the PH does BPP lie ? 

 

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)   
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0 
such that any circuit Cn that decides L∩{0,1}n requires 
size 2𝜀n, then BPP = P . 

 

 Lower bounds           Derandomization ! 

 Caution: Shouldn’t interpret this result as 
“randomness is useless”. 



Classes RP, co-RP and ZPP 



Class RP 

 Class RP is the one-sided error version of BPP. 

 

 Definition. A language L is in RTIME(T(n)) if there’s a 
PTM M that decides L in O(T(n)) time such that  

            x ∈  L            Pr[M(x) = 1] ≥ 2/3 

            x ∉  L            Pr[M(x) = 0] = 1. 

 

 Definition.  RP  = ∪ RTIME (nc). 

 

 Clearly, RP ⊆ BPP.  

 

c > 0 



Class RP 

 Class RP is the one-sided error version of BPP. 

 

 Definition. A language L is in RTIME(T(n)) if there’s a 
PTM M that decides L in O(T(n)) time such that  

            x ∈  L            Pr[M(x) = 1] ≥ 2/3 

            x ∉  L            Pr[M(x) = 0] = 1. 

 

 Definition.  RP  = ∪ RTIME (nc). 

 

 Clearly, RP ⊆ BPP.  

 

c > 0 

Remark. The defn of class 
RP is robust. The class 
remains unaltered if we 
replace 2/3 by |x|-c for any 
constant c > 0. The succ. 
prob. can then be 
amplified to 1-exp(-|x|d). 

    (Easy Homework) 

Randomized Poly-time. 



Class RP 

 Class RP is the one-sided error version of BPP. 

 

 Definition. A language L is in RTIME(T(n)) if there’s a 
PTM M that decides L in O(T(n)) time such that  

            x ∈  L            Pr[M(x) = 1] ≥ 2/3 

            x ∉  L            Pr[M(x) = 0] = 1. 

 

 Definition.  RP  = ∪ RTIME (nc). 

 

 Clearly, RP ⊆ BPP.    Obs. RP ⊆ NP.  (Easy Homework) 

 

c > 0 

Recall, we don’t know whether BPP ⊆ NP .  



Class co-RP 

 Definition.  co-RP = {L :  L ∈ RP} . 

 

 Obs. A language L is in co-RP if there’s a PTM M that 
decides L in poly-time such that  

            x ∈  L            Pr[M(x) = 1] = 1 

            x ∉  L            Pr[M(x) = 0] ≥ 2/3. 

 

 Obs.  co-RP ⊆ BPP . 

 

 



Class co-RP 

 Definition.  co-RP = {L :  L ∈ RP} . 

 

 Obs. A language L is in co-RP if there’s a PTM M that 
decides L in poly-time such that  

            x ∈  L            Pr[M(x) = 1] = 1 

            x ∉  L            Pr[M(x) = 0] ≥ 2/3. 

 

 Obs.  co-RP ⊆ BPP . 

 

 Is RP∩co-RP  in  P ? Not known! 

 



Class ZPP 

 Recall that PTMs are allowed to not halt on some 
computation paths defined by its random choices. 

 We say that a PTM M has expected running time T(n) if 
the expected running time of M on input x is at most 
T(n) for all x ∈ {0,1}n. 

 

 



Class ZPP 

 Recall that PTMs are allowed to not halt on some 
computation paths defined by its random choices. 

 We say that a PTM M has expected running time T(n) if 
the expected running time of M on input x is at most 
T(n) for all x ∈ {0,1}n. 

 

 Definition. A language L is in ZTIME(T(n)) if there’s a 
PTM M s.t. on every input x, M(x) = L(x) whenever M 
halts, and M has expected running time O(T(n)).   

 Definition. ZPP  = ∪ ZTIME (nc). 

 

 

c > 0 

Zero-error Probabilistic Poly-time. 



Class ZPP 

 Definition. A language L is in ZTIME(T(n)) if there’s a 
PTM M s.t. on every input x, M(x) = L(x) whenever M 
halts, and M has expected running time O(T(n)).   

 Definition. ZPP  = ∪ ZTIME (nc). 

 Problems in ZPP are said to have poly-time Las Vegas 
algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms. 

 

 Theorem.  ZPP = RP∩co-RP  ⊆  BPP.  (Homework) 

 

 Note. If P = BPP then P = ZPP = BPP. 

 

c > 0 



Why truly random bits? 

 A PTM is defined using truly random bits. Is the 
definition sufficiently powerful? Do biased random bits 
give any additional computational power? 

 

 



Why truly random bits? 

 A PTM is defined using truly random bits. Is the 
definition sufficiently powerful? Do biased random bits 
give any additional computational power? 

 

 Claim. A random bit with Pr[1] = p can be simulated 
by a PTM in expected O(1) time if the i-th bit of p can 
be computed in poly(i) time.      (Homework)   

 

 There’s a p and a PTM M with access to p-biased 
random bits s.t. M decides an undecidable language! 

 

 



Why truly random bits? 

 On the other hand, we can obtain truly random bits 
from biased random bits.  

 

 Claim. (von-Neumann 1951) A truly random bit can be 
simulated by a PTM with access to p-biased random 
bits in expected O(p-1(1-p)-1) time.       (Homework)   

 

 

 


