
Computational Complexity Theory

Lecture 11: PTMs; Classes BPP, RP and ZPP;

 Sipser-Gacs-Lautemann theorem

Department of Computer Science,
Indian Institute of Science

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

The use of statistical methods in a computational
model of a thermonuclear reaction for the ENIAC lead
to the invention of the Monte Carlo methods.

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

 To study randomized computation, we need to give
TMs the power of generating random numbers.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

1 with probability ½
0 with probability ½

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Xi+1 = aXi + c (mod m)

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Square an n bit number to get a 2n bit
number and take the middle n bits.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 To what extent a PRG is adequate is studied under
the topic `Pseudorandomness’ in complexity theory.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 We’ll assume that a TM can generate, or has access
to, truly random bits/coins. (We’ll touch upon “truly
vs biased random bits” at end of the lecture.)

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject).

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. PTMs and NTMs are syntatically similar – both
have two transition functions.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. But, semantically, they are quite different –
unlike NTMs, PTMs are meant to model realistic
computation devices.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. The above definition allows a PTM M to not
halt on some computation paths defined by its
random choices (unless we explicitly say that M runs
in T(n) time). More on this later when we define ZPP.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Success probability

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e., bounded
away from) ½. We’ll
discuss this next.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e., bounded
away from) ½. We’ll
discuss this next.

Bounded-error Probabilistic Polynomial-time

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. Achieving
success probability ½ is
trivial for any language. If
we replace ≥ 2/3 by > ½
then the corresponding
class is called PP, which is
(presumably) larger than
BPP. More on PP later.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n. Think of M’ that runs M on input x
for m = 4n2c+d times independently. Let b1, …,bm be
the outputs of these independent executions of M. M’
outputs Majority(b1, …,bm).

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’
outputs incorrectly only if Y = y1+…+ ym ≤ m/2.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’
outputs incorrectly only if Y = y1+…+ ym ≤ m/2.

 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given
that p ≥ ½ + n-c. So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c).

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’
outputs incorrectly only if Y = y1+…+ ym ≤ m/2.

 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given
that p ≥ ½ + n-c. So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c).

 By Chernoff bound, Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2),
for any 𝝳 ∈ [0,1]. We’ll now fix the value of 𝝳.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), for any 𝝳 ∈ [0,1].

 M’ outputs incorrectly only if Y ≤ m/2.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), for any 𝝳 ∈ [0,1].

 M’ outputs incorrectly only if Y ≤ m/2. If we choose 𝝳
s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), for any 𝝳 ∈ [0,1].

 M’ outputs incorrectly only if Y ≤ m/2. If we choose 𝝳
s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].

 Picking 𝝳 ≤ 2/(nc+2) is sufficient. Set 𝝳 = n-c.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), and 𝝳 = n-c.

 Therefore, Pr[M’(x) ≠ L(x)] ≤ exp(-(𝝳2𝛍)/2),

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), and 𝝳 = n-c.

 Therefore, Pr[M’(x) ≠ L(x)] ≤ exp(-(𝝳2𝛍)/2),

 ≤ exp(-nd).

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 2/3 can be replaced by 1 – exp(-|x|d) as before.

r ∈R {0,1}q(|x|)

(Easy Homework)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

 How large is BPP? Is NP ⊆ BPP? i.e., is SAT ∈ BPP?

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

 How large is BPP? Is NP ⊆ BPP? i.e., is SAT ∈ BPP?

 Next we show that BPP ⊆ P/poly. So, if NP ⊆ BPP
then PH = ∑2 . (Karp-Lipton)

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

 Most complexity theorist believe that P = BPP!
(More on this later.)

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

 Summing over all x∈{0,1}n, at most 2n.2-(n+1) = ½
fraction of the r’s are “bad” for some n-bit string x.

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n,
i.e., M(x, r0) = L(x) for all x∈{0,1}n.

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n,
i.e., M(x, r0) = L(x) for all x∈{0,1}n.

 By hardwiring this r0, the computation of M(. , r0) can
be viewed as a poly(n)-size circuit C. (Cook-Levin)

r ∈R {0,1}q(|x|)

Sipser-Gacs-Lautemann theorem

BPP is in PH

 We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not
known! (Yes, people still believe BPP = P.)

 Sipser showed BPP ⊆ PH, Gacs strengthened it to
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof.

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.

BPP is in PH

 We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not
known! (Yes, people still believe BPP = P.)

 Sipser showed BPP ⊆ PH, Gacs strengthened it to
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof.

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.

 Proof. Observe that BPP = co-BPP (homework). So, it is
sufficient to show BPP ⊆ ∑2.

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-|x| .

 Let n = |x| and m = q(n).

r ∈R {0,1}q(|x|)

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-|x| .

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈
Ax iff M(x, r) = 1. Observe that

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

r ∈R {0,1}q(|x|)

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-|x| .

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈
Ax iff M(x, r) = 1. Observe that

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Idea. If Ax is large then there exists a “small” collection
u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

r ∈R {0,1}q(|x|)

i∈[k]

bit-wise Xor

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-|x| .

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈
Ax iff M(x, r) = 1. Observe that

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Idea. If Ax is large then there exists a “small” collection
u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m. No such
collection exists if |Ax| is small.

r ∈R {0,1}q(|x|)

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-|x| .

 Let n = |x| and m = q(n). Let Ax ⊆ {0,1}m such that r ∈
Ax iff M(x, r) = 1. Observe that

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Idea. If Ax is large then there exists a “small” collection
u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m. Capture
this property with a ∑2 statement.

r ∈R {0,1}q(|x|)

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Then

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Set k = m/n + 1.

 Obs. If |Ax| ≤ 2-n.2m then for every collection u1, …,
uk∈{0,1}m, ∪ (Ax ⊕ ui) ⊊ {0,1}m.

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Then

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Set k = m/n + 1.

 Obs. If |Ax| ≤ 2-n.2m then for every collection u1, …,
uk∈{0,1}m, ∪ (Ax ⊕ ui) ⊊ {0,1}m.

 Proof. As |Ax| ≤ 2-n.2m , |∪ (Ax ⊕ ui)| ≤ k.2m-n < 2m for
sufficiently large n.

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Then

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Set k = m/n + 1.

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Let us complete the proof of the theorem assuming
the claim – we’ll proof it shortly.

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Then

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Set k = m/n + 1.

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 The observation and the claim imply the following:

 x ∈ L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

 x ∉ L ∀u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) ⊊ {0,1}m.

i∈[k]

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Then

 x ∈ L |Ax| ≥ (1 – 2-n).2m (Ax is large)

 x ∉ L |Ax| ≤ 2-n.2m (Ax is small).

 Set k = m/n + 1.

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 The observation and the claim imply the following:

 x ∈ L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m.

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1.

x∈L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1.

x∈L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m r∈ ∪ (Ax⊕ ui)

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1.

x∈L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m r∈ ∪ (Ax⊕ ui)

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m ∨ [r⊕ui ∈ Ax]

i∈[k]

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1.

x∈L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m r∈ ∪ (Ax⊕ ui)

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m ∨ [r⊕ui ∈ Ax]

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m ∨ M(x, r⊕ui)=1

i∈[k]

i∈[k]

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1.

x∈L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m r∈ ∪ (Ax⊕ ui)

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m ∨ [r⊕ui ∈ Ax]

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m ∨ M(x, r⊕ui)=1

 Think of a DTM N that takes input x, u1, …, um, r, and
outputs 1 iff M(x, r⊕ui) = 1 for some i ∈ [k]. Observe
that N is a poly-time DTM.

i∈[k]

i∈[k]

i∈[k]

i∈[k]

BPP is in PH

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2.

 Proof. r ∈ Ax iff M(x, r) = 1. Set k = m/n + 1.

x∈L ∃u1, …, uk∈{0,1}m ∪ (Ax ⊕ ui) = {0,1}m

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m r∈ ∪ (Ax⊕ ui)

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m ∨ [r⊕ui ∈ Ax]

x∈L ∃u1, …, uk∈{0,1}m ∀r∈{0,1}m N(x, u, r) = 1.

 Therefore, L ∈ ∑2 .

i∈[k]

i∈[k]

i∈[k]

u = {u1, …, uk}

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. The proof of this uses the probabilistic method.
i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∀r∈{0,1}m r ∈∪ (Ax⊕ ui)] > 0 .

i∈[k]

i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ∉ ∪ (Ax⊕ ui)] < 1 .

i∈[k]

i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ∉ (Ax⊕ ui) for every i∈ [k]] < 1 .

i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n.

i∈[k]

Distributed uniformly inside {0,1}m
as r is fixed and ui is picked
uniformly at random from {0,1}m.

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] ≤ 2-kn.

i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] < 2-m.

i∈[k]

k = m/n + 1

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] < 2-m.

 Applying union bound,

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 2m2-m

i∈[k]

Proof of the Claim

 Claim. If |Ax| ≥ (1 – 2-n).2m then there exists a
collection u1, …, uk∈{0,1}m s.t. ∪ (Ax ⊕ ui) = {0,1}m.

 Proof. We’ll show if u1, …, uk are picked independently
and uniformly at random then

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

 Fix an r∈{0,1}m (we’ll apply a union bound later). Fix
an i∈ [k]. Then, Pru [r ⊕ ui ∉ Ax] ≤ 2-n. As u1, …, uk are
independent, Pru [r ⊕ ui ∉ Ax for every i∈ [k]] < 2-m.

 Applying union bound,

 Pru [∃r∈{0,1}m r ⊕ ui ∉ Ax for every i∈ [k]] < 1 .

i∈[k]

Complete derandomization of BPP ?

 Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0
such that any circuit Cn that decides L∩{0,1}n requires
size 2𝜀n, then BPP = P .

 Lower bounds Derandomization !

Complete derandomization of BPP ?

 Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0
such that any circuit Cn that decides L∩{0,1}n requires
size 2𝜀n, then BPP = P .

 Lower bounds Derandomization !

 Caution: Shouldn’t interpret this result as
“randomness is useless”.

Classes RP, co-RP and ZPP

Class RP

 Class RP is the one-sided error version of BPP.

 Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Definition. RP = ∪ RTIME (nc).

 Clearly, RP ⊆ BPP.

c > 0

Class RP

 Class RP is the one-sided error version of BPP.

 Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Definition. RP = ∪ RTIME (nc).

 Clearly, RP ⊆ BPP.

c > 0

Remark. The defn of class
RP is robust. The class
remains unaltered if we
replace 2/3 by |x|-c for any
constant c > 0. The succ.
prob. can then be
amplified to 1-exp(-|x|d).

 (Easy Homework)

Randomized Poly-time.

Class RP

 Class RP is the one-sided error version of BPP.

 Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Definition. RP = ∪ RTIME (nc).

 Clearly, RP ⊆ BPP. Obs. RP ⊆ NP. (Easy Homework)

c > 0

Recall, we don’t know whether BPP ⊆ NP .

Class co-RP

 Definition. co-RP = {L : L ∈ RP} .

 Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

 x ∈ L Pr[M(x) = 1] = 1

 x ∉ L Pr[M(x) = 0] ≥ 2/3.

 Obs. co-RP ⊆ BPP .

Class co-RP

 Definition. co-RP = {L : L ∈ RP} .

 Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

 x ∈ L Pr[M(x) = 1] = 1

 x ∉ L Pr[M(x) = 0] ≥ 2/3.

 Obs. co-RP ⊆ BPP .

 Is RP∩co-RP in P ? Not known!

Class ZPP

 Recall that PTMs are allowed to not halt on some
computation paths defined by its random choices.

 We say that a PTM M has expected running time T(n) if
the expected running time of M on input x is at most
T(n) for all x ∈ {0,1}n.

Class ZPP

 Recall that PTMs are allowed to not halt on some
computation paths defined by its random choices.

 We say that a PTM M has expected running time T(n) if
the expected running time of M on input x is at most
T(n) for all x ∈ {0,1}n.

 Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

 Definition. ZPP = ∪ ZTIME (nc).

c > 0

Zero-error Probabilistic Poly-time.

Class ZPP

 Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

 Definition. ZPP = ∪ ZTIME (nc).

 Problems in ZPP are said to have poly-time Las Vegas
algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms.

 Theorem. ZPP = RP∩co-RP ⊆ BPP. (Homework)

 Note. If P = BPP then P = ZPP = BPP.

c > 0

Why truly random bits?

 A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

Why truly random bits?

 A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

 Claim. A random bit with Pr[1] = p can be simulated
by a PTM in expected O(1) time if the i-th bit of p can
be computed in poly(i) time. (Homework)

 There’s a p and a PTM M with access to p-biased
random bits s.t. M decides an undecidable language!

Why truly random bits?

 On the other hand, we can obtain truly random bits
from biased random bits.

 Claim. (von-Neumann 1951) A truly random bit can be
simulated by a PTM with access to p-biased random
bits in expected O(p-1(1-p)-1) time. (Homework)

