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Randomness brings in simplicity 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 Definition. A language L is in RNCi if there’s a 
randomized O((log n)i)-time parallel algorithm M that 
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,   

           x ∈ L         Pr[M(x) = 1] ≥ 2/3, 

           x ∉ L         Pr[M(x) = 0] = 1. 

   Here, n is the input length. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 

 Definition.  RNC = ∪ RNCi . 

 

 RNC stands for randomized NC. Like NC, we can 
alternatively define RNC using (uniform) circuits. 

i > 0 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 
aij = 1 if there’s an edge from 
the i-th vertex in L to the j-th 
vertex in R, otherwise aij = 0. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm. 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].     

2. Compute det(B).   

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm.    (RNC2 algorithm) 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].       (This can be done using n2 processors.) 

2. Compute det(B).   (determinant is in NC2, Csanky ’76) 

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Sn is the set of all permutations on [n]. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 

Polynomial in the xij variables. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 In the algorithm, we set xij = bij, where bij is picked 
randomly from [2n] if xij ≠ 0, otherwise bij = 0. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) = 0 then det(B) = 0. (So, the algorithm has 
one-sided error.) 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?  

𝞂∈Sn i∈[n] 

The answer is given by the Schwartz-Zippel lemma 



Schwartz-Zippel lemma 

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn) 
≠ 0 be a multivariate polynomial of (total) degree at 
most d over a field F. Let S ⊆ F be finite, and (a1, …, 
an) ∈ Sn such that each ai is chosen independently 
and uniformly at random from S. Then, 

                 Pr      [f(a1, …, an) = 0]  ≤  d/|S|. 

 

 Proof idea. Roots are far fewer than non-roots. Use 
induction on the number of variables.  

                                (Homework / reading exercise) 

(a1, …, an) ∈r S
n 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of 
det(X) = n   (by the Schwartz-Zippel lemma). 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, 
Tarnawski 2017) Finding a maximum matching in a 
general graph is in quasi-NC. 

In O((log n)3) time using exp( O((log n)3) ) processors,   



Randomized space bounded 
computation 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 

 The success probability can be amplied as before as 
the BPP error reduction trick can be implemented 
using log-space. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in RL if there’s a PTM M 
s.t. M uses O(log n)-space and for every x ∈ {0,1}*, 

               x ∈ L           Pr[M(x) = 1] ≥ 2/3 

               x ∉ L             Pr[M(x) = 0] = 1. 

 

 Clearly,  RL ⊆ NL ⊆ P  and  BPL ⊆ BPP. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 

 

 Is BPL = L ? Many believe that the answer is “Yes” ! 



Space bounded PTMs 

 Theorem. (Nisan ’92, ’94)  If L ∈ BPL then there’s a 
poly-time, O((log n)2)-space TM that decides L. 

 

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a 
nO(√log n)-time, O((log n)1.5)-space TM that decides L. 

 

 The second result extends Nisan’s techniques. 

 



Randomized reductions 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. 

Success 
probability 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. However, 

 Obs.  If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP. 

                                           (Easy homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Proof idea.  BPP error reduction trick + Cook-Levin. 

                                               (homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a 
similar class using randomized poly-time reduction. 

                                               



Class BP.NP 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Class BP.NP is also known as AM (Arthur-Merlin 
protocol) in the literature.  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ?  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 Theorem. If certain reasonable circuit lower bounds 
hold, then BP.NP = NP. 

 Proof idea. Similar to Nisan & Wigderson’s conditional 
BPP = P result. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH 
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is 
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).  

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next 
theorem shows that this would lead to PH collapse. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH = 
∑2). 

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.     (Assignment problem) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Thus, even without designing an efficient algorithm 
for GI, we know GI is unlikely to be NP-complete. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 Proof.  We’ll prove it. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 If GI is NP-complete then GNI is co-NP-complete. If 
so, then the above two theorems imply PH = ∑2. 



Graph Isomorphism in Quasi-P 

 

 

 

 Theorem. (Babai 2015) There’s a deterministic 
exp(O((log n)3)) time algorithm to solve the graph 
isomorphism problem. 



GNI is in BP.NP 



Graph Non-isomorphism 

 Definition. Let G1 and G2 be two undirected graphs 
on n vertices. Identify the vertices with [n]. We say 
G1 is isomorphic to G2, denoted G1 ≅ G2, if there’s a 
bijection/permutation 𝞹:[n]    [n] s.t. for all u, v ∈ [n], 
(u,v) is an edge in G1 if and only if (𝞹(u),𝞹(v)) is an 
edge in G2. 

 

 Definition. GNI = {(G1, G2) : G1 ≇ G2}. 

 

 Clearly, GNI ∈ co-NP, it is not known if GNI ∈ NP. 



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

There’s a poly-time TM  V and a polynomial 
function q(.) s.t. 
  u ∈ Sx       ∃c∈{0,1}q(|x|)   V(x, u, c) = 1 
  u ∉ Sx       ∀c∈{0,1}q(|x|)   V(x, u, c) = 0.   



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 

2. Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  



GNI is in BP.NP 

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1, 
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 Defn.  Aut(G) = {bijection  𝞹:[n]    [n] :  𝞹(G) = G}. 

G 

1 

2 3 

G 

1 

3 2 

Permutation  𝞹 = (1,3,2) is in Aut(G).  



GNI is in BP.NP 

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1, 
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 Defn.  Aut(G) = {bijection  𝞹:[n]    [n] :  𝞹(G) = G}. 

 

 Let Sx = {(H, 𝞹): H ≅ G1 or H ≅ G2 and 𝞹 ∈ Aut(H)}. 

 

 Obs.  Sx satisfies the properties stated in Step 1. 

                                           (Homework) 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|) 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. Uses Goldwasser-Sipser set lower bound 
protocol.  We’ll see the proof in a while. 

 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 

We can think of M’s computation as a Boolean circuit 𝜓x,r(y), which can be computed 
in randomized |x|O(1) time by fixing x and picking r∈{0,1}q(n) randomly.       Cook-Levin 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a Boolean circuit 𝜓x,r s.t.  

   |Sx| = 2n!  (large)      Prr [𝜓x,r(y) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [𝜓x,r(y) is unsatisfiable] ≥ 2/3. 

 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t.  

   |Sx| = 2n!  (large)      Prr [ϕx,r(z) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3. 

 

 
ϕx,r is a CNF and z = y + auxiliary variables.     
                                   Cook-Levin 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t.  

   |Sx| = 2n!  (large)      Prr [ϕx,r(z) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3. 

 

 Hence, GNI is in BP.NP. It remains to prove Lemma *. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|) 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

The value of k will be 
fixed in the analysis. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of 
hash functions in H, and v1,…, vt are k-bit strings. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of 
hash functions in H, and v1,…, vt are k-bit strings. 

Actually, we don’t need v1,…, vt to be random. We can assume these are all 0k.    



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of 
hash functions in H, and v1,…, vt are k-bit strings.  

                                 |r| = nO(1). 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 M interprets y as ((u1,c1), (u2,c2),…, (ut,ct)), where 
u1,…, ut are m-bit strings, and cp is an alleged 
certificate of up’s membership in Sx for every p ∈ [t]. 

                                 |y| = nO(1). 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. ip 

Recall, membership in Sx can be efficiently certified. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0.  

ip 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0. 
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large. 

ip 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0. 
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large. 

ip 

?? 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

 
h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

 

 Obs. Let Hm,k be a pairwise independent hash 
function family. For every x ∈ {0,1}m and y∈ {0,1}k,  

            Pr           [h(x) = y] = 2-k. 

  

h ∈r Hm,k 

h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

         = Pr           [h(x) = y] . Pr           [h(x’) = y’] . 
 

  

h ∈r Hm,k 

h ∈r Hm,k h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

         = Pr           [h(x) = y] . Pr           [h(x’) = y’] . 
 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

h ∈r Hm,k 

h ∈r Hm,k h ∈r Hm,k 



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F.  Then, 
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’) 
and b = (xy’ – x’y)/(x-x’).  



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F.  Then, 
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’) 
and b = (xy’ – x’y)/(x-x’). Therefore, 

      Pr          [ha,b(x) = y & ha,b(x’) = y’] 
  =  Pr          [a = (y–y’)/(x-x’) & b = (xy’ – x’y)/(x-x’)] 
  =  2-2𝓁   (as a and b are independently chosen). 

 

a,b ∈r F  

a,b ∈r F  



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

 Obs. If m ≥ k, then we can construct a pairwise 
independent Hm,k by considering Hm,m as above. 
Truncate the output of a function to the first k bits.    

                                              (Homework) 



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

 Obs. If m ≤ k, then we can construct a pairwise 
independent Hm,k by considering Hk,k as above. 
Generate k-bit i/p for a function by padding with 0. 

                                              (Homework) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions.  



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)), 
where i1,…, it are indices of functions in Hm,k, and 
v1,…,vt ∈ {0,1}k.  



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)), 
where i1,…, it are indices of functions in Hm,k, and 
v1,…,vt ∈ {0,1}k. Also, y = ((u1,c1), (u2,c2),…, (ut,ct)), 
where u1,…, ut ∈ {0,1}m, and cp is an alleged 
certificate of up’s membership in Sx for every p ∈ [t]. 

 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 
ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 For a fixed p, what is the probability (over the 
randomness of ip & vp) that there’s a up ∈ Sx s.t.       
h (up)=vp? We’ll upper & lower bound this 
probability. 

 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 Simplifying notations.  As p is fixed, let h  = h, vp = v 
and up = u.  

 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 Upper bound. Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≤ |Sx|/2
k. 

 As Hm,k is pairwise independent, for every u∈{0,1}m 
and v∈{0,1}k,  Prh [h(u) = v] = 2-k. 

 

 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then, 

         Prh [∃u ∈ Sx  s.t.  h(u) = v] 

   ≥   ∑  Prh [h(u) = v]  -  ∑    Prh [h(u) = v & h(u’) = v]   

 

ip 

u ∈ Sx u,u’ ∈ Sx  
  u ≠ u’ (by inclusion-exclusion principle) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then, 

         Prh [∃u ∈ Sx  s.t.  h(u) = v] 

   ≥   |Sx|/2
k -  |Sx|

2 / 22k+1. 

 

ip 

(as Hm,k is pairwise independent) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then, 

         Prh [∃u ∈ Sx  s.t.  h(u) = v] 

   ≥   |Sx|/2
k . (1 -  |Sx|/2

k+1). 

 

ip 

(as Hm,k is pairwise independent) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 If |Sx| = n! then (by the upper bound) 

     Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≤ n!/2k . 

                                                     

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 If |Sx| = n! then (by the upper bound) 

     Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≤ n!/2k .  Hence, 

 Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≤ t. n!/2k. 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Choosing k. Fix k s.t.  2k-2 < 2n! ≤ 2k-1. 

 If |Sx| = 2n! then (by the lower bound) 

   Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≥ |Sx|/2
k . (1- |Sx|/2

k+1) 

                                              ≥  |Sx|/2
k . ¾ = 3/2. n!/2k        

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Choosing k. Fix k s.t.  2k-2 < 2n! ≤ 2k-1. 

 If |Sx| = 2n! then (by the lower bound) 

    Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≥ 3/2 . n!/2k . Hence, 

 Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ] ≥ 3/2 . t . n!/2k. 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 If |Sx| = 2n! then  

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≥ 3/2 . t . n!/2k. 

 If |Sx| = n! then 

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≤ t. n!/2k. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 If |Sx| = 2n! then  

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≥ 3/2 . t . n!/2k. 

 If |Sx| = n! then 

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≤ t. n!/2k. 
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gap 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 If |Sx| = 2n!,  by Chernoff bd. & n!/2k ∈ [1/8,1/4], 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3. 

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4] 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3. 
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ip 

(Easy homework) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n!,  by Chernoff bd. & n!/2k ∈ [1/8,1/4], 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3. 

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4] 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3. 
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Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n! then  

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ≥ t*] ≥ 2/3. 

 If |Sx| = n! then 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| < t*] ≥ 2/3. 
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Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n! then  

  Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3. 

 If |Sx| = n! then 

  Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 
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