Computational Complexity Theory

Lecture 12: Perfect matching is in RNC; Class BPL; GNI is in BP.NP

Department of Computer Science, Indian Institute of Science

Randomness brings in simplicity

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.

Class RNC

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.
- Definition. A language L is in RNCⁱ if there's a randomized O((log n)ⁱ)-time parallel algorithm M that uses $n^{O(1)}$ parallel processors s.t. for every $x \in \{0, 1\}^*$,

 $x \in L \implies Pr[M(x) = I] \ge 2/3,$

 $x \notin L \implies Pr[M(x) = 0] = I.$

Here, n is the input length.

Class RNC

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.
- Definition. RNC = $\bigcup_{i>0}$ RNCⁱ.
- RNC stands for randomized NC. Like NC, we can alternatively define RNC using (uniform) circuits.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.

 $a_{ij} = I$ if there's an edge from the i-th vertex in L to the j-th vertex in R, otherwise $a_{ij} = 0$.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.
- Algorithm.
- I. Construct $B = (b_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $b_{ij}=0$. Else, pick b_{ij} independently and uniformly <u>at random</u> from [2n].
- 2. Compute det(B).
- 3. If $det(B) \neq 0$ output "yes", else output "no".

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.
- Algorithm. (RNC² algorithm)
- I. Construct $B = (b_{ij})_{i,j\in n}$ as follows: If $a_{ij}=0$, then $b_{ij}=0$. Else, pick b_{ij} independently and uniformly <u>at random</u> from [2n]. (This can be done using n² processors.)
- 2. Compute det(B). (determinant is in NC², Csanky '76)
- 3. If $det(B) \neq 0$ output "yes", else output "no".

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- S_n is the set of all permutations on [n].

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. det(X) ≠ 0 ← G has a perfect matching.
 Polynomial in the x_{ii} variables.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- In the algorithm, we set $x_{ij} = b_{ij}$, where b_{ij} is picked randomly from [2n] if $x_{ij} \neq 0$, otherwise $b_{ij} = 0$.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If det(X) = 0 then det(B) = 0. (So, the algorithm has one-sided error.)

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If $det(X) \neq 0$, what is the probability that $det(B) \neq 0$?

The answer is given by the Schwartz-Zippel lemma

Schwartz-Zippel lemma

• Lemma. (Schwartz 1980, Zippel 1979) Let $f(x_1, ..., x_n) \neq 0$ be a multivariate polynomial of (total) degree at most d over a field F. Let $S \subseteq F$ be finite, and $(a_1, ..., a_n) \in S^n$ such that each a_i is chosen independently and uniformly at random from S. Then,

$$\Pr_{(a_1,...,a_n) \in_r S^n} [f(a_1,...,a_n) = 0] \leq d/|S|.$$

• *Proof idea*. Roots are far fewer than non-roots. Use induction on the number of variables.

(Homework / reading exercise)

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching $\in RNC^2$.
- Correctness of the Algorithm.
- I. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij}=0$, then $x_{ij}=0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of det(X) = n (by the Schwartz-Zippel lemma).

- Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a maximum matching in a general graph is in RNC².
- Is finding maximum matching in NC ? Open!

- Theorem. (*Mulmuley, Vazirani, Vazirani 1987*) Finding a maximum matching in a general graph is in RNC².
- Is finding maximum matching in NC ? Open!
- Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, Tarnawski 2017) Finding a maximum matching in a general graph is in quasi-NC.

In $O((\log n)^3)$ time using $exp(O((\log n)^3))$ processors,

Randomized space bounded computation

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Definition. A language L is in BPL if there's a PTM M such that M uses O(log n)-space and for every x ∈ {0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Definition. A language L is in BPL if there's a PTM M such that M uses O(log n)-space and for every x ∈ {0,1}*, Pr[M(x) = L(x)] ≥ 2/3.
- The success probability can be amplied as before as the BPP error reduction trick can be implemented using log-space.

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Definition. A language L is in RL if there's a PTM M s.t. M uses O(log n)-space and for every $x \in \{0, I\}^*$, $x \in L \longrightarrow Pr[M(x) = I] \ge 2/3$ $x \notin L \longrightarrow Pr[M(x) = 0] = I.$
- Clearly, $RL \subseteq NL \subseteq P$ and $BPL \subseteq BPP$.

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Claim. $BPL \subseteq P$.
- Proof idea. Think of the adjancency matrix A of the configuration graph of the O(log n)-space PTM. Compute the probability of acceptance by taking powers of A. (Assignment problem)

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Claim. $BPL \subseteq P$.
- Proof idea. Think of the adjancency matrix A of the configuration graph of the O(log n)-space PTM. Compute the probability of acceptance by taking powers of A. (Assignment problem)

• Is BPL = L ? Many believe that the answer is "Yes" !

- Theorem. (Nisan '92, '94) If L ∈ BPL then there's a poly-time, O((log n)²)-space TM that decides L.
- Theorem. (Saks, Zhou '99) If $L \in BPL$ then there's a $n^{O(\sqrt{\log n})}$ -time, $O((\log n)^{1.5})$ -space TM that decides L.
- The second result extends Nisan's techniques.

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$. \longleftarrow Success probability
- For arbitrary L₁ and L₂, we may not be able to boost the success probability 2/3, and so, the above kind of reductions needn't be transitive.

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- For arbitrary L₁ and L₂, we may not be able to boost the success probability 2/3, and so, the above kind of reductions needn't be transitive. However,

• Obs. If
$$L_1 \leq_r L_2$$
 and $L_2 \in BPP$, then $L_1 \in BPP$.
(Easy homework)

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |\mathbf{x}|^{-c}$ to $| \exp(-|\mathbf{x}|^d)$.
- *Proof idea*. BPP error reduction trick + Cook-Levin.

(homework)

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |\mathbf{x}|^{-c}$ to $| \exp(-|\mathbf{x}|^d)$.
- Recall, NP = {L : L ≤_p SAT}. It makes sense to define a similar class using randomized poly-time reduction.

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |\mathbf{x}|^{-c}$ to $| \exp(-|\mathbf{x}|^d)$.
- Definition. BP.NP = {L : $L \leq_r SAT$ }.
- Class **BP.NP** is also known as **AM** (Arthur-Merlin protocol) in the literature.

- Definition. BP.NP = {L : $L \leq_r SAT$ }.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ?

- Definition. BP.NP = {L : $L \leq_r SAT$ }.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- Theorem. If certain reasonable circuit lower bounds hold, then BP.NP = NP.
- Proof idea. Similar to Nisan & Wigderson's conditional
 BPP = P result.

- Definition. BP.NP = {L : $L \leq_r SAT$ }.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- We may further ask:
- I. Is **BP.NP** in **PH**? Recall, **BPP** is in **PH**.
- 2. Is SAT \in BP.NP? Recall, if SAT \in BPP then PH collapses. (SAT \in BP.NP as NP \subseteq BP.NP .)

- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. BP.NP is in \sum_{3} . (In fact, BP.NP is in \prod_{2} .)
- Proof idea. Similar to the Sipser-Gacs-Lautemann theorem. (Assignment problem)

- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. BP.NP is in \sum_{3} . (In fact, BP.NP is in \prod_{2} .)
- Proof idea. Similar to the Sipser-Gacs-Lautemann theorem. (Assignment problem)
- Wondering if BP.NP $\subseteq \prod_2$ implies BP.NP $\subseteq \sum_2$? Is BP.NP = co-BP.NP? (Recall, BPP = co-BPP).
- If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next theorem shows that this would lead to PH collapse.
- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. If SAT \in BP.NP then PH = \sum_{3} (in fact, PH = \sum_{2}).
- **Proof idea**. Similar to Adleman's theorem + Karp-Lipton theorem. (Assignment problem)

- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. If SAT \in BP.NP then PH = \sum_{2} .
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Thus, even without designing an efficient algorithm for GI, we know GI is unlikely to be NP-complete.

- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_{2}$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- Proof. We'll prove it.

- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. If SAT \in BP.NP then PH = \sum_{2} .
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- If GI is NP-complete then GNI is co-NP-complete. If so, then the above two theorems imply $PH = \sum_{1}^{2} \sum_{1}^{$

Graph Isomorphism in Quasi-P

Theorem. (Babai 2015) There's a deterministic exp(O((log n)³)) time algorithm to solve the graph isomorphism problem.

Graph Non-isomorphism

- Definition. Let G_1 and G_2 be two undirected graphs on n vertices. Identify the vertices with [n]. We say G_1 is isomorphic to G_2 , denoted $G_1 \cong G_2$, if there's a bijection/permutation π :[n] \rightarrow [n] s.t. for all u, v \in [n], (u,v) is an edge in G_1 if and only if ($\pi(u), \pi(v)$) is an edge in G_2 .
- Definition. GNI = { $(G_1, G_2) : G_1 \ncong G_2$ }.
- Clearly, $GNI \in co-NP$, it is not known if $GNI \in NP$.

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

There's a poly-time TM V and a polynomial function q(.) s.t. $u \in S_x \implies \exists c \in \{0, 1\}^{q(|x|)} \quad V(x, u, c) = 1$ $u \notin S_x \implies \forall c \in \{0, 1\}^{q(|x|)} \quad V(x, u, c) = 0.$

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be <u>certified</u> in $m^{O(1)} = n^{O(1)}$ time.
- 2. Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".

• Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

• Defn. Aut(G) = {bijection $\pi:[n] \rightarrow [n]: \pi(G) = G$ }.

Permutation $\pi = (1,3,2)$ is in Aut(G).

- Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.
- Defn. Aut(G) = {bijection $\pi:[n] \rightarrow [n]: \pi(G) = G$ }.
- Let $S_x = \{(H, \pi) : H \cong G_1 \text{ or } H \cong G_2 \text{ and } \pi \in Aut(H)\}.$

Obs. S_x satisfies the properties stated in Step I.
(Homework)

• Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input x = $(G_1, G_2), y \& r, and a polynomial function q(.) s.t.$ $|S_x| = 2n! (large) \implies Pr_r [\exists y \ s.t. \ M(x, y, r) = 1] \ge 2/3$ $|S_x| = n! (small) \implies Pr_r [\forall y \ s.t. \ M(x, y, r) = 0] \ge 2/3.$

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- Proof. Uses Goldwasser-Sipser set lower bound protocol. We'll see the proof in a while.

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.

We can think of M's computation as a Boolean circuit $\psi_{x,r}(y)$, which can be computed in randomized $|x|^{O(1)}$ time by fixing x and picking $r \in \{0,1\}^{q(n)}$ randomly. *Cook-Levin*

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps **x** to a Boolean circuit $\psi_{\rm x,r}$ s.t.
 - $|S_x| = 2n!$ (large) $\implies \Pr_r[\psi_{x,r}(y) \text{ is satisfiable}] \ge 2/3$
 - $|S_x| = n!$ (small) $\implies \Pr_r[\psi_{x,r}(y) \text{ is unsatisfiable}] \ge 2/3.$

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t.

 $|S_x| = 2n!$ (large) $\implies Pr_r [\phi_{x,r}(z) \text{ is satisfiable}] \ge 2/3$

 $|S_x| = n!$ (small) $\implies \Pr_r [\phi_{x,r}(z) \text{ is unsatisfiable}] \ge 2/3.$

 $\phi_{x,r}$ is a CNF and z = y + auxiliary variables. Cook-Levin

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t.

 $|S_x| = 2n!$ (large) $\implies \Pr_r [\phi_{x,r}(z) \text{ is satisfiable}] \ge 2/3$

 $|S_x| = n!$ (small) $\implies \Pr_r [\phi_{x,r}(z) \text{ is unsatisfiable}] \ge 2/3.$

• Hence, GNI is in BP.NP. It remains to prove Lemma *.

• Lemma *. There's a poly-time TM M that takes input x = $(G_1, G_2), y \& r, and a polynomial function q(.) s.t.$ $|S_x| = 2n!$ (large) $\implies Pr_r [\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r [\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .

The value of \mathbf{k} will be fixed in the analysis.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $((i_1,v_1), (i_2,v_2), ..., (i_t,v_t))$, where $i_1, ..., i_t$ are indices of hash functions in H, and $v_1, ..., v_t$ are k-bit strings.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $((i_1,v_1), (i_2,v_2), ..., (i_t,v_t))$, where $i_1, ..., i_t$ are indices of hash functions in H, and $v_1, ..., v_t$ are k-bit strings.

Actually, we don't need v_1, \ldots, v_t to be random. We can assume these are all 0^k .

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- Proof idea. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $((i_1,v_1), (i_2,v_2), ..., (i_t,v_t))$, where $i_1, ..., i_t$ are indices of hash functions in H, and $v_1, ..., v_t$ are k-bit strings.

 $|r| = n^{O(1)}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- M interprets y as $((u_1,c_1), (u_2,c_2),..., (u_t,c_t))$, where $u_1,..., u_t$ are m-bit strings, and c_p is an alleged certificate of u_p 's membership in S_x for every $p \in [t]$. $|y| = n^{O(1)}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.

Recall, membership in S_x can be efficiently certified.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$. If sufficiently many (say, t^*) of these checks pass, M outputs I, else it o/ps 0.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every p ∈ [t]: M uses c_p & x to check if u_p ∈ S_x. If yes, M checks if h_{i_p} (u_p) = v_p. If sufficiently many (say, t*) of these checks pass, M outputs I, else it o/ps 0. Intuitively, ∃y s.t. t* of the checks pass iff S_x is large.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r)] = 0 \ge 2/3$.
- Proof idea. Let H = {h_i} be a <u>"suitable</u>" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x.
- For every p ∈ [t]: M uses c_p & x to check if u_p ∈ S_x. If yes, M checks if h_{i_p} (u_p) = v_p. If sufficiently many (say, t*) of these checks pass, M outputs I, else it o/ps 0. Intuitively, ∃y s.t. t* of the checks pass iff S_x is large.

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every <u>distinct</u> $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$Pr_{h \in_r H_{m,k}}$$
 [h(x) = y and h(x') = y'] = 2^{-2k}.

- Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every distinct $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$, $\Pr_{h \in H_{mk}} [h(x) = y \text{ and } h(x') = y'] = 2^{-2k}$.
- Obs. Let $H_{m,k}$ be a pairwise independent hash function family. For every $x \in \{0, I\}^m$ and $y \in \{0, I\}^k$, $\Pr_{h \in_r H_{m,k}} [h(x) = y] = 2^{-k}$.

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every <u>distinct</u> $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$\begin{array}{l} \mathsf{Pr}_{h \in_{r} \mathsf{H}_{m,k}} & [h(x) = y \text{ and } h(x') = y'] = 2^{-2k}. \\ = \mathsf{Pr}_{h \in_{r} \mathsf{H}_{m,k}} & [h(x) = y] \cdot \mathsf{Pr}_{h \in_{r} \mathsf{H}_{m,k}} & [h(x') = y'] \cdot \end{array}$$

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every <u>distinct</u> $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$\begin{array}{l} {\sf Pr}_{h \, \in_{r} \, {\sf H}_{m,k}} & [h(x) = y \mbox{ and } h(x') = y'] = 2^{-2k}. \\ = {\sf Pr}_{h \, \in_{r} \, {\sf H}_{m,k}} & [h(x) = y] \ . \, {\sf Pr}_{h \, \in_{r} \, {\sf H}_{m,k}} & [h(x') = y'] \ . \end{array}$$

• Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a, b \in F\}$ is a pairwise independent hash family.

- Example. Let l > 0 and F be the <u>finite field</u> of size 2^l. We can identify F with {0,1}^l as elements of F are l-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{l,l} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Proof. Let x, x' \in F be distinct and y, y' \in F. Then, $h_{a,b}(x) = y \& h_{a,b}(x') = y'$ if and only if a = (y-y')/(x-x')and b = (xy' - x'y)/(x-x').

- Example. Let l > 0 and F be the <u>finite field</u> of size 2^l. We can identify F with {0,1}^l as elements of F are l-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{l,l} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Proof. Let x, x' \in F be distinct and y, y' \in F. Then, $h_{a,b}(x) = y \& h_{a,b}(x') = y'$ if and only if a = (y-y')/(x-x')and b = (xy' - x'y)/(x-x'). Therefore,

 $Pr_{a,b \in_r F}$ [$h_{a,b}(x) = y \& h_{a,b}(x') = y'$]

- = $Pr_{a,b \in_r F}$ [a = (y-y')/(x-x') & b = (xy' x'y)/(x-x')]
- = $2^{-2\ell}$ (as a and b are independently chosen).

- Example. Let l > 0 and F be the <u>finite field</u> of size 2^l. We can identify F with {0,1}^l as elements of F are l-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{l,l} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Obs. If m ≥ k, then we can construct a pairwise independent H_{m,k} by considering H_{m,m} as above. Truncate the output of a function to the first k bits.

(Homework)
Pairwise independent hash functions

- Example. Let l > 0 and F be the <u>finite field</u> of size 2^l. We can identify F with {0,1}^l as elements of F are l-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{l,l} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Obs. If m ≤ k, then we can construct a pairwise independent H_{m,k} by considering H_{k,k} as above. Generate k-bit i/p for a function by padding with 0.

(Homework)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- **Proof.** Let $H_{m,k}$ be a family of pairwise independent hash functions.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* Let $H_{m,k}$ be a family of pairwise independent hash functions. Recall, $r = ((i_1,v_1), (i_2,v_2),..., (i_t,v_t))$, where $i_1,..., i_t$ are indices of functions in $H_{m,k}$, and $v_1,...,v_t \in \{0,1\}^k$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof. Let $H_{m,k}$ be a family of pairwise independent hash functions. Recall, $r = ((i_1,v_1), (i_2,v_2),..., (i_t,v_t))$, where $i_1,..., i_t$ are indices of functions in $H_{m,k}$, and $v_1,...,v_t \in \{0,1\}^k$. Also, $y = ((u_1,c_1), (u_2,c_2),..., (u_t,c_t))$, where $u_1,..., u_t \in \{0,1\}^m$, and c_p is an alleged certificate of u_p 's membership in S_x for every $p \in [t]$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- For a fixed p, what is the probability (over the randomness of $i_p \& v_p$) that there's a $u_p \in S_x$ s.t. $h_{i_p} (u_p) = v_p$? We'll upper & lower bound this probability.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Simplifying notations. As p is fixed, let $h_{i_p} = h$, $v_p = v$ and $u_p = u$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Upper bound. $\Pr_{h,v} [\exists u \in S_x \text{ s.t. } h(u) = v] \leq |S_x|/2^k$.
- As $H_{m,k}$ is pairwise independent, for every $u \in \{0, I\}^m$ and $v \in \{0, I\}^k$, $Pr_h[h(u) = v] = 2^{-k}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Lower bound. Fix a $v \in \{0, I\}^k$ arbitrarily. Then,

 $\Pr_{h} \left[\exists u \in S_{x} \text{ s.t. } h(u) = v \right]$ $\geq \sum_{u \in S_{x}} \Pr_{h} \left[h(u) = v \right] - \sum_{u,u' \in S_{x}} \Pr_{h} \left[h(u) = v \& h(u') = v \right]$ $u \neq u' \quad \text{(by inclusion-exclusion principle)}$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Lower bound. Fix a $v \in \{0, I\}^k$ arbitrarily. Then, $\Pr_h [\exists u \in S_x \text{ s.t. } h(u) = v]$ $\geq |S_x|/2^k - |S_x|^2 / 2^{2k+1}.$ (as $H_{m,k}$ is pairwise independent)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Lower bound. Fix a $v \in \{0, I\}^k$ arbitrarily. Then, $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = v]$

 $\geq |S_x|/2^k \cdot (1 - |S_x|/2^{k+1}).$

(as $H_{m,k}$ is pairwise independent)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- If $|S_x| = n!$ then (by the upper bound) $Pr_{h,v} [\exists u \in S_x \text{ s.t. } h(u) = v] \le n!/2^k$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- If |S_x| = n! then (by the upper bound)
 Pr_{h,v} [∃u ∈ S_x s.t. h(u) = v] ≤ n!/2^k. Hence,
 Exp [Upc[t] : ∃u ∈ S st h (u) = v]| 1 ≤ t n!/2^k
- $\operatorname{Exp}_{r}[|\{p \in [t] : \exists u_{p} \in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = v_{p}\}|] \leq t. n!/2^{k}.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Choosing k. Fix k s.t. $2^{k-2} < 2n! \le 2^{k-1}$
- If $|S_x| = 2n!$ then (by the lower bound) $\Pr_{h,v} [\exists u \in S_x \text{ s.t. } h(u) = v] \ge |S_x|/2^k \cdot (1 - |S_x|/2^{k+1})$ $\ge |S_x|/2^k \cdot \frac{3}{4} = 3/2 \cdot n!/2^k$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- Choosing k. Fix k s.t. $2^{k-2} < 2n! \le 2^{k-1}$.
- If $|S_x| = 2n!$ then (by the lower bound) $Pr_{h,v} [\exists u \in S_x \text{ s.t. } h(u) = v] \ge 3/2 . n!/2^k$. Hence,
- $\operatorname{Exp}_{r}[|\{p \in [t] : \exists u_{p} \in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = v_{p}\}|] \ge 3/2 . t . n!/2^{k}.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- If $|S_x| = 2n!$ then $Exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}|] \ge 3/2 . t . n!/2^k.$
- If $|S_x| = n!$ then $Exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}|] \le t. n!/2^k.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- If $|S_x| = 2n!$ then $Exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}|] \ge 3/2 . t . n!/2^k.$
- If $|S_x| = n!$ then $f(x) = \sum_{p \in [t]} |\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}| \leq t. n!/2^k.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$.
- If $|S_x| = 2n!$, by Chernoff bd. & $n!/2^k \in [1/8, 1/4]$, $\Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}| \ge 1.4. \text{ t. } n!/2^k] \ge 2/3.$
- If $|S_x| = n!$, by Chernoff/Markov bd. & $n!/2^k \in [1/8, 1/4]$ $\Pr_r [|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}| < 1.4. \text{ t. } n!/2^k] \ge 2/3.$

(Easy homework)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$. $t^* = 1.4.t.n!/2^k$
- If $|S_x| = 2n!$, by Chernoff bd. & $n!/2^k \in [1/8, 1/4]$, $Pr_r[|\{p\in[t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}| \ge 1.4. \text{ t. } n!/2^k] \ge 2/3.$
- If $|S_x| = n!$, by Chernoff/Markov bd. & $n!/2^k \in [1/8, 1/4]$ $\Pr_r [|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}| < 1.4. \text{ t. } n!/2^k] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$. $t^* = 1.4.t.n!/2^k$
- If $|S_x| = 2n!$ then
 - $\Pr_{r}[|\{p \in [t] : \exists u_{p} \in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = v_{p}\}| \ge t^{*}] \ge 2/3.$
- If $|S_x| = n!$ then $\Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = v_p\}| < t^*] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = v_p$. $t^* = 1.4.t.n!/2^k$
- If $|S_x| = 2n!$ then
 - $\Pr_{r}[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3.$
- If $|S_x| = n!$ then

 $\Pr_{r} [\forall y \text{ s.t. } M(x, y, r) = 0] \geq 2/3.$