
Computational Complexity Theory

Lecture 12: Perfect matching is in RNC;

 Class BPL; GNI is in BP.NP

Department of Computer Science,
Indian Institute of Science

Randomness brings in simplicity

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. A language L is in RNCi if there’s a
randomized O((log n)i)-time parallel algorithm M that
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3,

 x ∉ L Pr[M(x) = 0] = 1.

 Here, n is the input length.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. RNC = ∪ RNCi .

 RNC stands for randomized NC. Like NC, we can
alternatively define RNC using (uniform) circuits.

i > 0

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

aij = 1 if there’s an edge from
the i-th vertex in L to the j-th
vertex in R, otherwise aij = 0.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm.

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n].

2. Compute det(B).

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm. (RNC2 algorithm)

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n]. (This can be done using n2 processors.)

2. Compute det(B). (determinant is in NC2, Csanky ’76)

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Sn is the set of all permutations on [n].

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Polynomial in the xij variables.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 In the algorithm, we set xij = bij, where bij is picked
randomly from [2n] if xij ≠ 0, otherwise bij = 0.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) = 0 then det(B) = 0. (So, the algorithm has
one-sided error.)

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?

𝞂∈Sn i∈[n]

The answer is given by the Schwartz-Zippel lemma

Schwartz-Zippel lemma

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn)
≠ 0 be a multivariate polynomial of (total) degree at
most d over a field F. Let S ⊆ F be finite, and (a1, …,
an) ∈ Sn such that each ai is chosen independently
and uniformly at random from S. Then,

 Pr [f(a1, …, an) = 0] ≤ d/|S|.

 Proof idea. Roots are far fewer than non-roots. Use
induction on the number of variables.

 (Homework / reading exercise)

(a1, …, an) ∈r S
n

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of
det(X) = n (by the Schwartz-Zippel lemma).

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson,
Tarnawski 2017) Finding a maximum matching in a
general graph is in quasi-NC.

In O((log n)3) time using exp(O((log n)3)) processors,

Randomized space bounded
computation

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

 The success probability can be amplied as before as
the BPP error reduction trick can be implemented
using log-space.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in RL if there’s a PTM M
s.t. M uses O(log n)-space and for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Clearly, RL ⊆ NL ⊆ P and BPL ⊆ BPP.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

 Is BPL = L ? Many believe that the answer is “Yes” !

Space bounded PTMs

 Theorem. (Nisan ’92, ’94) If L ∈ BPL then there’s a
poly-time, O((log n)2)-space TM that decides L.

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a
nO(√log n)-time, O((log n)1.5)-space TM that decides L.

 The second result extends Nisan’s techniques.

Randomized reductions

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive.

Success
probability

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

 Obs. If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP.

 (Easy homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Proof idea. BPP error reduction trick + Cook-Levin.

 (homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Class BP.NP

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Definition. BP.NP = {L : L ≤r SAT}.

 Class BP.NP is also known as AM (Arthur-Merlin
protocol) in the literature.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ?

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 Theorem. If certain reasonable circuit lower bounds
hold, then BP.NP = NP.

 Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 We may further ask:

1. Is BP.NP in PH? Recall, BPP is in PH.

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next
theorem shows that this would lead to PH collapse.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH =
∑2).

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Thus, even without designing an efficient algorithm
for GI, we know GI is unlikely to be NP-complete.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 Proof. We’ll prove it.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 If GI is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = ∑2.

Graph Isomorphism in Quasi-P

 Theorem. (Babai 2015) There’s a deterministic
exp(O((log n)3)) time algorithm to solve the graph
isomorphism problem.

GNI is in BP.NP

Graph Non-isomorphism

 Definition. Let G1 and G2 be two undirected graphs
on n vertices. Identify the vertices with [n]. We say
G1 is isomorphic to G2, denoted G1 ≅ G2, if there’s a
bijection/permutation 𝞹:[n] [n] s.t. for all u, v ∈ [n],
(u,v) is an edge in G1 if and only if (𝞹(u),𝞹(v)) is an
edge in G2.

 Definition. GNI = {(G1, G2) : G1 ≇ G2}.

 Clearly, GNI ∈ co-NP, it is not known if GNI ∈ NP.

GNI is in BP.NP

 The idea.

1. Step 1: Let x = (G1, G2). Associate a set Sx with
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

GNI is in BP.NP

 The idea.

1. Step 1: Let x = (G1, G2). Associate a set Sx with
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

There’s a poly-time TM V and a polynomial
function q(.) s.t.
 u ∈ Sx ∃c∈{0,1}q(|x|) V(x, u, c) = 1
 u ∉ Sx ∀c∈{0,1}q(|x|) V(x, u, c) = 0.

GNI is in BP.NP

 The idea.

1. Step 1: Let x = (G1, G2). Associate a set Sx with
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

2. Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

GNI is in BP.NP

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1,
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

 Defn. Aut(G) = {bijection 𝞹:[n] [n] : 𝞹(G) = G}.

G

1

2 3

G

1

3 2

Permutation 𝞹 = (1,3,2) is in Aut(G).

GNI is in BP.NP

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1,
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

 Defn. Aut(G) = {bijection 𝞹:[n] [n] : 𝞹(G) = G}.

 Let Sx = {(H, 𝞹): H ≅ G1 or H ≅ G2 and 𝞹 ∈ Aut(H)}.

 Obs. Sx satisfies the properties stated in Step 1.

 (Homework)

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|)

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Uses Goldwasser-Sipser set lower bound
protocol. We’ll see the proof in a while.

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

We can think of M’s computation as a Boolean circuit 𝜓x,r(y), which can be computed
in randomized |x|O(1) time by fixing x and picking r∈{0,1}q(n) randomly. Cook-Levin

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Corollary. There’s randomized poly-time reduction
that maps x to a Boolean circuit 𝜓x,r s.t.

 |Sx| = 2n! (large) Prr [𝜓x,r(y) is satisfiable] ≥ 2/3

 |Sx| = n! (small) Prr [𝜓x,r(y) is unsatisfiable] ≥ 2/3.

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Corollary. There’s randomized poly-time reduction
that maps x to a CNF ϕx,r s.t.

 |Sx| = 2n! (large) Prr [ϕx,r(z) is satisfiable] ≥ 2/3

 |Sx| = n! (small) Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3.

ϕx,r is a CNF and z = y + auxiliary variables.
 Cook-Levin

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Corollary. There’s randomized poly-time reduction
that maps x to a CNF ϕx,r s.t.

 |Sx| = 2n! (large) Prr [ϕx,r(z) is satisfiable] ≥ 2/3

 |Sx| = n! (small) Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3.

 Hence, GNI is in BP.NP. It remains to prove Lemma *.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|)

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

The value of k will be
fixed in the analysis.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 Let t = nO(1) be sufficiently large. M interprets r as
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of
hash functions in H, and v1,…, vt are k-bit strings.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 Let t = nO(1) be sufficiently large. M interprets r as
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of
hash functions in H, and v1,…, vt are k-bit strings.

Actually, we don’t need v1,…, vt to be random. We can assume these are all 0k.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 Let t = nO(1) be sufficiently large. M interprets r as
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of
hash functions in H, and v1,…, vt are k-bit strings.

 |r| = nO(1).

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 M interprets y as ((u1,c1), (u2,c2),…, (ut,ct)), where
u1,…, ut are m-bit strings, and cp is an alleged
certificate of up’s membership in Sx for every p ∈ [t].

 |y| = nO(1).

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. ip

Recall, membership in Sx can be efficiently certified.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.

ip

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large.

ip

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large.

ip

??

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

h ∈r Hm,k

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

 Obs. Let Hm,k be a pairwise independent hash
function family. For every x ∈ {0,1}m and y∈ {0,1}k,

 Pr [h(x) = y] = 2-k.

h ∈r Hm,k

h ∈r Hm,k

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

 = Pr [h(x) = y] . Pr [h(x’) = y’] .

h ∈r Hm,k

h ∈r Hm,k h ∈r Hm,k

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

 = Pr [h(x) = y] . Pr [h(x’) = y’] .

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

h ∈r Hm,k

h ∈r Hm,k h ∈r Hm,k

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F. Then,
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’)
and b = (xy’ – x’y)/(x-x’).

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F. Then,
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’)
and b = (xy’ – x’y)/(x-x’). Therefore,

 Pr [ha,b(x) = y & ha,b(x’) = y’]
 = Pr [a = (y–y’)/(x-x’) & b = (xy’ – x’y)/(x-x’)]
 = 2-2𝓁 (as a and b are independently chosen).

a,b ∈r F

a,b ∈r F

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Obs. If m ≥ k, then we can construct a pairwise
independent Hm,k by considering Hm,m as above.
Truncate the output of a function to the first k bits.

 (Homework)

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Obs. If m ≤ k, then we can construct a pairwise
independent Hm,k by considering Hk,k as above.
Generate k-bit i/p for a function by padding with 0.

 (Homework)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Let Hm,k be a family of pairwise independent
hash functions.

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Let Hm,k be a family of pairwise independent
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)),
where i1,…, it are indices of functions in Hm,k, and
v1,…,vt ∈ {0,1}k.

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Let Hm,k be a family of pairwise independent
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)),
where i1,…, it are indices of functions in Hm,k, and
v1,…,vt ∈ {0,1}k. Also, y = ((u1,c1), (u2,c2),…, (ut,ct)),
where u1,…, ut ∈ {0,1}m, and cp is an alleged
certificate of up’s membership in Sx for every p ∈ [t].

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 For a fixed p, what is the probability (over the
randomness of ip & vp) that there’s a up ∈ Sx s.t.
h (up)=vp? We’ll upper & lower bound this
probability.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Simplifying notations. As p is fixed, let h = h, vp = v
and up = u.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Upper bound. Prh,v [∃u ∈ Sx s.t. h(u) = v] ≤ |Sx|/2
k.

 As Hm,k is pairwise independent, for every u∈{0,1}m
and v∈{0,1}k, Prh [h(u) = v] = 2-k.

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then,

 Prh [∃u ∈ Sx s.t. h(u) = v]

 ≥ ∑ Prh [h(u) = v] - ∑ Prh [h(u) = v & h(u’) = v]

ip

u ∈ Sx u,u’ ∈ Sx
 u ≠ u’ (by inclusion-exclusion principle)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then,

 Prh [∃u ∈ Sx s.t. h(u) = v]

 ≥ |Sx|/2
k - |Sx|

2 / 22k+1.

ip

(as Hm,k is pairwise independent)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then,

 Prh [∃u ∈ Sx s.t. h(u) = v]

 ≥ |Sx|/2
k . (1 - |Sx|/2

k+1).

ip

(as Hm,k is pairwise independent)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = n! then (by the upper bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≤ n!/2k .

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = n! then (by the upper bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≤ n!/2k . Hence,

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≤ t. n!/2k.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Choosing k. Fix k s.t. 2k-2 < 2n! ≤ 2k-1.

 If |Sx| = 2n! then (by the lower bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≥ |Sx|/2
k . (1- |Sx|/2

k+1)

 ≥ |Sx|/2
k . ¾ = 3/2. n!/2k

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Choosing k. Fix k s.t. 2k-2 < 2n! ≤ 2k-1.

 If |Sx| = 2n! then (by the lower bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≥ 3/2 . n!/2k . Hence,

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≥ 3/2 . t . n!/2k.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = 2n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≥ 3/2 . t . n!/2k.

 If |Sx| = n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≤ t. n!/2k.

ip

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = 2n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≥ 3/2 . t . n!/2k.

 If |Sx| = n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≤ t. n!/2k.

ip

ip

ip

gap

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = 2n!, by Chernoff bd. & n!/2k ∈ [1/8,1/4],

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3.

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4]

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3.

ip

ip

ip

(Easy homework)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp. t* = 1.4. t. n!/2k

 If |Sx| = 2n!, by Chernoff bd. & n!/2k ∈ [1/8,1/4],

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3.

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4]

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3.

ip

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp. t* = 1.4. t. n!/2k

 If |Sx| = 2n! then

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ≥ t*] ≥ 2/3.

 If |Sx| = n! then

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| < t*] ≥ 2/3.

ip

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp. t* = 1.4. t. n!/2k

 If |Sx| = 2n! then

 Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3.

 If |Sx| = n! then

 Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

ip

