
Computational Complexity Theory

Lecture 12: Perfect matching is in RNC;

 Class BPL; GNI is in BP.NP

Department of Computer Science,
Indian Institute of Science

Randomness brings in simplicity

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. A language L is in RNCi if there’s a
randomized O((log n)i)-time parallel algorithm M that
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3,

 x ∉ L Pr[M(x) = 0] = 1.

 Here, n is the input length.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. RNC = ∪ RNCi .

 RNC stands for randomized NC. Like NC, we can
alternatively define RNC using (uniform) circuits.

i > 0

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

aij = 1 if there’s an edge from
the i-th vertex in L to the j-th
vertex in R, otherwise aij = 0.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm.

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n].

2. Compute det(B).

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm. (RNC2 algorithm)

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n]. (This can be done using n2 processors.)

2. Compute det(B). (determinant is in NC2, Csanky ’76)

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Sn is the set of all permutations on [n].

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Polynomial in the xij variables.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 In the algorithm, we set xij = bij, where bij is picked
randomly from [2n] if xij ≠ 0, otherwise bij = 0.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) = 0 then det(B) = 0. (So, the algorithm has
one-sided error.)

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?

𝞂∈Sn i∈[n]

The answer is given by the Schwartz-Zippel lemma

Schwartz-Zippel lemma

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn)
≠ 0 be a multivariate polynomial of (total) degree at
most d over a field F. Let S ⊆ F be finite, and (a1, …,
an) ∈ Sn such that each ai is chosen independently
and uniformly at random from S. Then,

 Pr [f(a1, …, an) = 0] ≤ d/|S|.

 Proof idea. Roots are far fewer than non-roots. Use
induction on the number of variables.

 (Homework / reading exercise)

(a1, …, an) ∈r S
n

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of
det(X) = n (by the Schwartz-Zippel lemma).

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson,
Tarnawski 2017) Finding a maximum matching in a
general graph is in quasi-NC.

In O((log n)3) time using exp(O((log n)3)) processors,

Randomized space bounded
computation

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

 The success probability can be amplied as before as
the BPP error reduction trick can be implemented
using log-space.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in RL if there’s a PTM M
s.t. M uses O(log n)-space and for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Clearly, RL ⊆ NL ⊆ P and BPL ⊆ BPP.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

 Is BPL = L ? Many believe that the answer is “Yes” !

Space bounded PTMs

 Theorem. (Nisan ’92, ’94) If L ∈ BPL then there’s a
poly-time, O((log n)2)-space TM that decides L.

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a
nO(√log n)-time, O((log n)1.5)-space TM that decides L.

 The second result extends Nisan’s techniques.

Randomized reductions

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive.

Success
probability

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

 Obs. If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP.

 (Easy homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Proof idea. BPP error reduction trick + Cook-Levin.

 (homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Class BP.NP

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Definition. BP.NP = {L : L ≤r SAT}.

 Class BP.NP is also known as AM (Arthur-Merlin
protocol) in the literature.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ?

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 Theorem. If certain reasonable circuit lower bounds
hold, then BP.NP = NP.

 Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 We may further ask:

1. Is BP.NP in PH? Recall, BPP is in PH.

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next
theorem shows that this would lead to PH collapse.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH =
∑2).

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Thus, even without designing an efficient algorithm
for GI, we know GI is unlikely to be NP-complete.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 Proof. We’ll prove it.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 If GI is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = ∑2.

Graph Isomorphism in Quasi-P

 Theorem. (Babai 2015) There’s a deterministic
exp(O((log n)3)) time algorithm to solve the graph
isomorphism problem.

GNI is in BP.NP

Graph Non-isomorphism

 Definition. Let G1 and G2 be two undirected graphs
on n vertices. Identify the vertices with [n]. We say
G1 is isomorphic to G2, denoted G1 ≅ G2, if there’s a
bijection/permutation 𝞹:[n] [n] s.t. for all u, v ∈ [n],
(u,v) is an edge in G1 if and only if (𝞹(u),𝞹(v)) is an
edge in G2.

 Definition. GNI = {(G1, G2) : G1 ≇ G2}.

 Clearly, GNI ∈ co-NP, it is not known if GNI ∈ NP.

GNI is in BP.NP

 The idea.

1. Step 1: Let x = (G1, G2). Associate a set Sx with
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

GNI is in BP.NP

 The idea.

1. Step 1: Let x = (G1, G2). Associate a set Sx with
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

There’s a poly-time TM V and a polynomial
function q(.) s.t.
 u ∈ Sx ∃c∈{0,1}q(|x|) V(x, u, c) = 1
 u ∉ Sx ∀c∈{0,1}q(|x|) V(x, u, c) = 0.

GNI is in BP.NP

 The idea.

1. Step 1: Let x = (G1, G2). Associate a set Sx with
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

2. Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

GNI is in BP.NP

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1,
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

 Defn. Aut(G) = {bijection 𝞹:[n] [n] : 𝞹(G) = G}.

G

1

2 3

G

1

3 2

Permutation 𝞹 = (1,3,2) is in Aut(G).

GNI is in BP.NP

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1,
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

 Defn. Aut(G) = {bijection 𝞹:[n] [n] : 𝞹(G) = G}.

 Let Sx = {(H, 𝞹): H ≅ G1 or H ≅ G2 and 𝞹 ∈ Aut(H)}.

 Obs. Sx satisfies the properties stated in Step 1.

 (Homework)

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|)

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Uses Goldwasser-Sipser set lower bound
protocol. We’ll see the proof in a while.

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

We can think of M’s computation as a Boolean circuit 𝜓x,r(y), which can be computed
in randomized |x|O(1) time by fixing x and picking r∈{0,1}q(n) randomly. Cook-Levin

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Corollary. There’s randomized poly-time reduction
that maps x to a Boolean circuit 𝜓x,r s.t.

 |Sx| = 2n! (large) Prr [𝜓x,r(y) is satisfiable] ≥ 2/3

 |Sx| = n! (small) Prr [𝜓x,r(y) is unsatisfiable] ≥ 2/3.

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Corollary. There’s randomized poly-time reduction
that maps x to a CNF ϕx,r s.t.

 |Sx| = 2n! (large) Prr [ϕx,r(z) is satisfiable] ≥ 2/3

 |Sx| = n! (small) Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3.

ϕx,r is a CNF and z = y + auxiliary variables.
 Cook-Levin

GNI is in BP.NP

 Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

 Corollary. There’s randomized poly-time reduction
that maps x to a CNF ϕx,r s.t.

 |Sx| = 2n! (large) Prr [ϕx,r(z) is satisfiable] ≥ 2/3

 |Sx| = n! (small) Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3.

 Hence, GNI is in BP.NP. It remains to prove Lemma *.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|)

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

The value of k will be
fixed in the analysis.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 Let t = nO(1) be sufficiently large. M interprets r as
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of
hash functions in H, and v1,…, vt are k-bit strings.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 Let t = nO(1) be sufficiently large. M interprets r as
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of
hash functions in H, and v1,…, vt are k-bit strings.

Actually, we don’t need v1,…, vt to be random. We can assume these are all 0k.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 Let t = nO(1) be sufficiently large. M interprets r as
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of
hash functions in H, and v1,…, vt are k-bit strings.

 |r| = nO(1).

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 M interprets y as ((u1,c1), (u2,c2),…, (ut,ct)), where
u1,…, ut are m-bit strings, and cp is an alleged
certificate of up’s membership in Sx for every p ∈ [t].

 |y| = nO(1).

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. ip

Recall, membership in Sx can be efficiently certified.

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.

ip

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large.

ip

Set lower bound protocol

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = vp. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large.

ip

??

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

h ∈r Hm,k

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

 Obs. Let Hm,k be a pairwise independent hash
function family. For every x ∈ {0,1}m and y∈ {0,1}k,

 Pr [h(x) = y] = 2-k.

h ∈r Hm,k

h ∈r Hm,k

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

 = Pr [h(x) = y] . Pr [h(x’) = y’] .

h ∈r Hm,k

h ∈r Hm,k h ∈r Hm,k

Pairwise independent hash functions

 Definition. A family Hm,k of (hash) functions from
{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

 Pr [h(x) = y and h(x’) = y’] = 2-2k.

 = Pr [h(x) = y] . Pr [h(x’) = y’] .

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

h ∈r Hm,k

h ∈r Hm,k h ∈r Hm,k

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F. Then,
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’)
and b = (xy’ – x’y)/(x-x’).

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F. Then,
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’)
and b = (xy’ – x’y)/(x-x’). Therefore,

 Pr [ha,b(x) = y & ha,b(x’) = y’]
 = Pr [a = (y–y’)/(x-x’) & b = (xy’ – x’y)/(x-x’)]
 = 2-2𝓁 (as a and b are independently chosen).

a,b ∈r F

a,b ∈r F

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Obs. If m ≥ k, then we can construct a pairwise
independent Hm,k by considering Hm,m as above.
Truncate the output of a function to the first k bits.

 (Homework)

Pairwise independent hash functions

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁.
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.

 Obs. If m ≤ k, then we can construct a pairwise
independent Hm,k by considering Hk,k as above.
Generate k-bit i/p for a function by padding with 0.

 (Homework)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Let Hm,k be a family of pairwise independent
hash functions.

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Let Hm,k be a family of pairwise independent
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)),
where i1,…, it are indices of functions in Hm,k, and
v1,…,vt ∈ {0,1}k.

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. Let Hm,k be a family of pairwise independent
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)),
where i1,…, it are indices of functions in Hm,k, and
v1,…,vt ∈ {0,1}k. Also, y = ((u1,c1), (u2,c2),…, (ut,ct)),
where u1,…, ut ∈ {0,1}m, and cp is an alleged
certificate of up’s membership in Sx for every p ∈ [t].

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 For a fixed p, what is the probability (over the
randomness of ip & vp) that there’s a up ∈ Sx s.t.
h (up)=vp? We’ll upper & lower bound this
probability.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Simplifying notations. As p is fixed, let h = h, vp = v
and up = u.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Upper bound. Prh,v [∃u ∈ Sx s.t. h(u) = v] ≤ |Sx|/2
k.

 As Hm,k is pairwise independent, for every u∈{0,1}m
and v∈{0,1}k, Prh [h(u) = v] = 2-k.

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then,

 Prh [∃u ∈ Sx s.t. h(u) = v]

 ≥ ∑ Prh [h(u) = v] - ∑ Prh [h(u) = v & h(u’) = v]

ip

u ∈ Sx u,u’ ∈ Sx
 u ≠ u’ (by inclusion-exclusion principle)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then,

 Prh [∃u ∈ Sx s.t. h(u) = v]

 ≥ |Sx|/2
k - |Sx|

2 / 22k+1.

ip

(as Hm,k is pairwise independent)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then,

 Prh [∃u ∈ Sx s.t. h(u) = v]

 ≥ |Sx|/2
k . (1 - |Sx|/2

k+1).

ip

(as Hm,k is pairwise independent)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = n! then (by the upper bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≤ n!/2k .

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = n! then (by the upper bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≤ n!/2k . Hence,

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≤ t. n!/2k.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Choosing k. Fix k s.t. 2k-2 < 2n! ≤ 2k-1.

 If |Sx| = 2n! then (by the lower bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≥ |Sx|/2
k . (1- |Sx|/2

k+1)

 ≥ |Sx|/2
k . ¾ = 3/2. n!/2k

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 Choosing k. Fix k s.t. 2k-2 < 2n! ≤ 2k-1.

 If |Sx| = 2n! then (by the lower bound)

 Prh,v [∃u ∈ Sx s.t. h(u) = v] ≥ 3/2 . n!/2k . Hence,

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≥ 3/2 . t . n!/2k.

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = 2n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≥ 3/2 . t . n!/2k.

 If |Sx| = n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≤ t. n!/2k.

ip

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = 2n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≥ 3/2 . t . n!/2k.

 If |Sx| = n! then

 Expr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}|] ≤ t. n!/2k.

ip

ip

ip

gap

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp.

 If |Sx| = 2n!, by Chernoff bd. & n!/2k ∈ [1/8,1/4],

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3.

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4]

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3.

ip

ip

ip

(Easy homework)

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp. t* = 1.4. t. n!/2k

 If |Sx| = 2n!, by Chernoff bd. & n!/2k ∈ [1/8,1/4],

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3.

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4]

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3.

ip

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp. t* = 1.4. t. n!/2k

 If |Sx| = 2n! then

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ≥ t*] ≥ 2/3.

 If |Sx| = n! then

 Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| < t*] ≥ 2/3.

ip

ip

ip

Set lower bound protocol (contd.)

 Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.

 |Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3

 |Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx. If yes, M checks if h (up) = vp. t* = 1.4. t. n!/2k

 If |Sx| = 2n! then

 Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3.

 If |Sx| = n! then

 Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

ip

