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Randomness brings in simplicity 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 Definition. A language L is in RNCi if there’s a 
randomized O((log n)i)-time parallel algorithm M that 
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,   

           x ∈ L         Pr[M(x) = 1] ≥ 2/3, 

           x ∉ L         Pr[M(x) = 0] = 1. 

   Here, n is the input length. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 

 Definition.  RNC = ∪ RNCi . 

 

 RNC stands for randomized NC. Like NC, we can 
alternatively define RNC using (uniform) circuits. 

i > 0 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 
aij = 1 if there’s an edge from 
the i-th vertex in L to the j-th 
vertex in R, otherwise aij = 0. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm. 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].     

2. Compute det(B).   

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm.    (RNC2 algorithm) 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].       (This can be done using n2 processors.) 

2. Compute det(B).   (determinant is in NC2, Csanky ’76) 

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Sn is the set of all permutations on [n]. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 

Polynomial in the xij variables. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 In the algorithm, we set xij = bij, where bij is picked 
randomly from [2n] if xij ≠ 0, otherwise bij = 0. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) = 0 then det(B) = 0. (So, the algorithm has 
one-sided error.) 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?  

𝞂∈Sn i∈[n] 

The answer is given by the Schwartz-Zippel lemma 



Schwartz-Zippel lemma 

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn) 
≠ 0 be a multivariate polynomial of (total) degree at 
most d over a field F. Let S ⊆ F be finite, and (a1, …, 
an) ∈ Sn such that each ai is chosen independently 
and uniformly at random from S. Then, 

                 Pr      [f(a1, …, an) = 0]  ≤  d/|S|. 

 

 Proof idea. Roots are far fewer than non-roots. Use 
induction on the number of variables.  

                                (Homework / reading exercise) 

(a1, …, an) ∈r S
n 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of 
det(X) = n   (by the Schwartz-Zippel lemma). 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, 
Tarnawski 2017) Finding a maximum matching in a 
general graph is in quasi-NC. 

In O((log n)3) time using exp( O((log n)3) ) processors,   



Randomized space bounded 
computation 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 

 The success probability can be amplied as before as 
the BPP error reduction trick can be implemented 
using log-space. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in RL if there’s a PTM M 
s.t. M uses O(log n)-space and for every x ∈ {0,1}*, 

               x ∈ L           Pr[M(x) = 1] ≥ 2/3 

               x ∉ L             Pr[M(x) = 0] = 1. 

 

 Clearly,  RL ⊆ NL ⊆ P  and  BPL ⊆ BPP. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 

 

 Is BPL = L ? Many believe that the answer is “Yes” ! 



Space bounded PTMs 

 Theorem. (Nisan ’92, ’94)  If L ∈ BPL then there’s a 
poly-time, O((log n)2)-space TM that decides L. 

 

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a 
nO(√log n)-time, O((log n)1.5)-space TM that decides L. 

 

 The second result extends Nisan’s techniques. 

 



Randomized reductions 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. 

Success 
probability 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. However, 

 Obs.  If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP. 

                                           (Easy homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Proof idea.  BPP error reduction trick + Cook-Levin. 

                                               (homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a 
similar class using randomized poly-time reduction. 

                                               



Class BP.NP 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Class BP.NP is also known as AM (Arthur-Merlin 
protocol) in the literature.  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ?  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 Theorem. If certain reasonable circuit lower bounds 
hold, then BP.NP = NP. 

 Proof idea. Similar to Nisan & Wigderson’s conditional 
BPP = P result. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH 
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is 
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).  

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next 
theorem shows that this would lead to PH collapse. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH = 
∑2). 

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.     (Assignment problem) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Thus, even without designing an efficient algorithm 
for GI, we know GI is unlikely to be NP-complete. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 Proof.  We’ll prove it. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 If GI is NP-complete then GNI is co-NP-complete. If 
so, then the above two theorems imply PH = ∑2. 



Graph Isomorphism in Quasi-P 

 

 

 

 Theorem. (Babai 2015) There’s a deterministic 
exp(O((log n)3)) time algorithm to solve the graph 
isomorphism problem. 



GNI is in BP.NP 



Graph Non-isomorphism 

 Definition. Let G1 and G2 be two undirected graphs 
on n vertices. Identify the vertices with [n]. We say 
G1 is isomorphic to G2, denoted G1 ≅ G2, if there’s a 
bijection/permutation 𝞹:[n]    [n] s.t. for all u, v ∈ [n], 
(u,v) is an edge in G1 if and only if (𝞹(u),𝞹(v)) is an 
edge in G2. 

 

 Definition. GNI = {(G1, G2) : G1 ≇ G2}. 

 

 Clearly, GNI ∈ co-NP, it is not known if GNI ∈ NP. 



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

There’s a poly-time TM  V and a polynomial 
function q(.) s.t. 
  u ∈ Sx       ∃c∈{0,1}q(|x|)   V(x, u, c) = 1 
  u ∉ Sx       ∀c∈{0,1}q(|x|)   V(x, u, c) = 0.   



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 

2. Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  



GNI is in BP.NP 

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1, 
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 Defn.  Aut(G) = {bijection  𝞹:[n]    [n] :  𝞹(G) = G}. 

G 

1 

2 3 

G 

1 

3 2 

Permutation  𝞹 = (1,3,2) is in Aut(G).  



GNI is in BP.NP 

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1, 
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 Defn.  Aut(G) = {bijection  𝞹:[n]    [n] :  𝞹(G) = G}. 

 

 Let Sx = {(H, 𝞹): H ≅ G1 or H ≅ G2 and 𝞹 ∈ Aut(H)}. 

 

 Obs.  Sx satisfies the properties stated in Step 1. 

                                           (Homework) 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|) 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. Uses Goldwasser-Sipser set lower bound 
protocol.  We’ll see the proof in a while. 

 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 

We can think of M’s computation as a Boolean circuit 𝜓x,r(y), which can be computed 
in randomized |x|O(1) time by fixing x and picking r∈{0,1}q(n) randomly.       Cook-Levin 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a Boolean circuit 𝜓x,r s.t.  

   |Sx| = 2n!  (large)      Prr [𝜓x,r(y) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [𝜓x,r(y) is unsatisfiable] ≥ 2/3. 

 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t.  

   |Sx| = 2n!  (large)      Prr [ϕx,r(z) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3. 

 

 
ϕx,r is a CNF and z = y + auxiliary variables.     
                                   Cook-Levin 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t.  

   |Sx| = 2n!  (large)      Prr [ϕx,r(z) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3. 

 

 Hence, GNI is in BP.NP. It remains to prove Lemma *. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|) 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

The value of k will be 
fixed in the analysis. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of 
hash functions in H, and v1,…, vt are k-bit strings. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of 
hash functions in H, and v1,…, vt are k-bit strings. 

Actually, we don’t need v1,…, vt to be random. We can assume these are all 0k.    



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
((i1,v1), (i2,v2),…, (it,vt)), where i1,…, it are indices of 
hash functions in H, and v1,…, vt are k-bit strings.  

                                 |r| = nO(1). 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 M interprets y as ((u1,c1), (u2,c2),…, (ut,ct)), where 
u1,…, ut are m-bit strings, and cp is an alleged 
certificate of up’s membership in Sx for every p ∈ [t]. 

                                 |y| = nO(1). 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. ip 

Recall, membership in Sx can be efficiently certified. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0.  

ip 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0. 
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large. 

ip 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = vp. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0. 
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large. 

ip 

?? 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

 
h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

 

 Obs. Let Hm,k be a pairwise independent hash 
function family. For every x ∈ {0,1}m and y∈ {0,1}k,  

            Pr           [h(x) = y] = 2-k. 

  

h ∈r Hm,k 

h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

         = Pr           [h(x) = y] . Pr           [h(x’) = y’] . 
 

  

h ∈r Hm,k 

h ∈r Hm,k h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

         = Pr           [h(x) = y] . Pr           [h(x’) = y’] . 
 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

h ∈r Hm,k 

h ∈r Hm,k h ∈r Hm,k 



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F.  Then, 
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’) 
and b = (xy’ – x’y)/(x-x’).  



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F.  Then, 
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’) 
and b = (xy’ – x’y)/(x-x’). Therefore, 

      Pr          [ha,b(x) = y & ha,b(x’) = y’] 
  =  Pr          [a = (y–y’)/(x-x’) & b = (xy’ – x’y)/(x-x’)] 
  =  2-2𝓁   (as a and b are independently chosen). 

 

a,b ∈r F  

a,b ∈r F  



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

 Obs. If m ≥ k, then we can construct a pairwise 
independent Hm,k by considering Hm,m as above. 
Truncate the output of a function to the first k bits.    

                                              (Homework) 



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

 Obs. If m ≤ k, then we can construct a pairwise 
independent Hm,k by considering Hk,k as above. 
Generate k-bit i/p for a function by padding with 0. 

                                              (Homework) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions.  



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)), 
where i1,…, it are indices of functions in Hm,k, and 
v1,…,vt ∈ {0,1}k.  



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions. Recall, r = ((i1,v1), (i2,v2),…, (it,vt)), 
where i1,…, it are indices of functions in Hm,k, and 
v1,…,vt ∈ {0,1}k. Also, y = ((u1,c1), (u2,c2),…, (ut,ct)), 
where u1,…, ut ∈ {0,1}m, and cp is an alleged 
certificate of up’s membership in Sx for every p ∈ [t]. 

 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 
ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 For a fixed p, what is the probability (over the 
randomness of ip & vp) that there’s a up ∈ Sx s.t.       
h (up)=vp? We’ll upper & lower bound this 
probability. 

 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 Simplifying notations.  As p is fixed, let h  = h, vp = v 
and up = u.  

 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 Upper bound. Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≤ |Sx|/2
k. 

 As Hm,k is pairwise independent, for every u∈{0,1}m 
and v∈{0,1}k,  Prh [h(u) = v] = 2-k. 

 

 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then, 

         Prh [∃u ∈ Sx  s.t.  h(u) = v] 

   ≥   ∑  Prh [h(u) = v]  -  ∑    Prh [h(u) = v & h(u’) = v]   

 

ip 

u ∈ Sx u,u’ ∈ Sx  
  u ≠ u’ (by inclusion-exclusion principle) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then, 

         Prh [∃u ∈ Sx  s.t.  h(u) = v] 

   ≥   |Sx|/2
k -  |Sx|

2 / 22k+1. 

 

ip 

(as Hm,k is pairwise independent) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Lower bound. Fix a v∈{0,1}k arbitrarily. Then, 

         Prh [∃u ∈ Sx  s.t.  h(u) = v] 

   ≥   |Sx|/2
k . (1 -  |Sx|/2

k+1). 

 

ip 

(as Hm,k is pairwise independent) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 If |Sx| = n! then (by the upper bound) 

     Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≤ n!/2k . 

                                                     

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 

 If |Sx| = n! then (by the upper bound) 

     Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≤ n!/2k .  Hence, 

 Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≤ t. n!/2k. 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Choosing k. Fix k s.t.  2k-2 < 2n! ≤ 2k-1. 

 If |Sx| = 2n! then (by the lower bound) 

   Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≥ |Sx|/2
k . (1- |Sx|/2

k+1) 

                                              ≥  |Sx|/2
k . ¾ = 3/2. n!/2k        

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 Choosing k. Fix k s.t.  2k-2 < 2n! ≤ 2k-1. 

 If |Sx| = 2n! then (by the lower bound) 

    Prh,v [∃u ∈ Sx  s.t.  h(u) = v] ≥ 3/2 . n!/2k . Hence, 

 Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = vp}| ] ≥ 3/2 . t . n!/2k. 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 If |Sx| = 2n! then  

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≥ 3/2 . t . n!/2k. 

 If |Sx| = n! then 

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≤ t. n!/2k. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 If |Sx| = 2n! then  

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≥ 3/2 . t . n!/2k. 

 If |Sx| = n! then 

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ] ≤ t. n!/2k. 

 

ip 

ip 

ip 

gap 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.  

 If |Sx| = 2n!,  by Chernoff bd. & n!/2k ∈ [1/8,1/4], 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3. 

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4] 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3. 

 

ip 

ip 

ip 

(Easy homework) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n!,  by Chernoff bd. & n!/2k ∈ [1/8,1/4], 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ≥ 1.4. t. n!/2k] ≥ 2/3. 

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4] 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| < 1.4. t. n!/2k] ≥ 2/3. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n! then  

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| ≥ t*] ≥ 2/3. 

 If |Sx| = n! then 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = vp}| < t*] ≥ 2/3. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = vp.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n! then  

  Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3. 

 If |Sx| = n! then 

  Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 

ip 


