= Computational Complexity Theory

Lecture |2: Perfect matching is in RNC;
Class BPL; GNI is in BPNP

Department of Computer Science,
Indian Institute of Science




Randomness brings in simplicity

e The use of randomness helps in designing simple and
efficient algorithms for many problems.

* We'll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.




Class RNC

e The use of randomness helps in designing simple and
efficient algorithms for many problems.

* We'll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

o A language L is in RNC' if there’s a
randomized O((log n)')-time parallel algorithm M that
uses n°() parallel processors s.t. for every x € {0,1}*,

x€eL == Pr[M(x)=1]=2/3,
x &L = Pr[M(x) =0]=1I.
Here, n is the input length.



Class RNC

e The use of randomness helps in designing simple and
efficient algorithms for many problems.

* We'll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

° RNC = U RNC'.

i>0

* RNC stands for randomized NC. Like NC, we can
alternatively define RNC using (uniform) circuits.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (2;);c, , where n = [L| = |R[.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (2;);c, , where n = [L| = |R[.

N\

a; = | if there’s an edge from

the i-th vertex in L to the |-th
vertex in R, otherwise a; = 0.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (2;);c, , where n = [L| = |R[.

e Algorithm.

I. Construct B = (b;).c, as follows: If a,=0, then b,=0.

Else, pick b; independently and uniformly at random
from [2n].

2. Compute det(B).

3. If det(B) # 0 output“‘yes”, else output“no”.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (2;);c, , where n = [L| = |R[.

e Algorithm. (RNC? algorithm)

I. Construct B = (b;).c, as follows: If a,=0, then b,=0.
Else, pick b; independently and uniformly at random
from [2n]. (This can be done using n? processors.)

2. Compute det(B). (determinantis in NC?, )
3. If det(B) # 0 output“‘yes”, else output“no”.




Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

. Define X = (xij)i,jEn as follows: If aij=0, then xij=O. Else, X;

is a formal variable.
2 det(X)= § (-1)%@ [] x,g¢)-

OES, i€[n]

e S, is the set of all permutations on [n].



Perfect matching in RNC

o Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

I Define X = (x;),,c, as follows:If a,=0, then x;=0. Else, x;

is a formal variable.
2 det(X)= 3 (10 ] X,

OES, i€[n]

e Obs. det(X) #0 4= G has a perfect matching.



Perfect matching in RNC

o Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

I Define X = (x;);;e, as follows: If a,=0, then x;=0. Else, x;

is a formal variable.
2 det(X)= § (-1)%@ [] x,g¢)-

OES, i€[n]

e Obs. det(X) #0 4= G has a perfect matching.

!

Polynomial in the x; variables.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

. Define X = (xij)i,jEn as follows: If aij=0, then xij=O. Else, X;

is a formal variable.
2 det(X)= § (-1)%@ [] x,g¢)-

OES, i€[n]

o Obs. det(X) #0 4= G has a perfect matching.

* In the algorithm, we set x; = b;, where b; is picked

randomly from [2n] if x; # 0, otherwise b; = 0.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

. Define X = (xij)i,jEn as follows: If aij=0, then xij=O. Else, X;

is a formal variable.
2 det(X)= 3 (1@ [T x,qq.
OES, i€[n]
o Obs. det(X) #0 4= G has a perfect matching.

o If det(X) = 0 then det(B) = 0. (So, the algorithm has
one-sided error.)



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

. Define X = (xij)i,jEn as follows: If aij=0, then xij=O. Else, X;

is a formal variable.
2 det(X)= § (-1)%@ [] x,g¢)-

OES, i€[n]

o Obs. det(X) #0 4= G has a perfect matching.
o If det(X) # 0, what is the probability that det(B) # 0 ?

The answer is given by the Schwartz-Zippel lemma



Schwartz-Zippel lemma

o Let f(x,, ..., X))
# 0 be a multivariate polynomial of (total) degree at
most d over a field £ Let S € F be finite,and (a,, ...,
a,) € S" such that each a, is chosen independently
and uniformly at random from S.Then,

Pr [f(aj,...,a,) = 0] = d/|]].

(aj,...,a,) €.S"

* Proof idea. Roots are far fewer than non-roots. Use
induction on the number of variables.



Perfect matching in RNC

» Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNCZ,
e Correctness of the Algorithm.

. Define X = (xij)i,jEn as follows: If aij=0, then xij=O. Else, X;

is a formal variable.
2 det(X)= 3 (1P [ xqp .
oES, i€[n]
o Obs. det(X) #0 4= G has a perfect matching.
o If det(X) # 0, then Pr[det(B) # 0] = "% as degree of

det(X) = n (by the Schwartz-Zippel lemma). =




Perfect matching in RNC

e Theorem. Finding a
maximum matching in a general graph is in RNC?,

¢ Is finding maximum matching in NC ? Open!



Perfect matching in RNC

e Theorem. Finding a
maximum matching in a general graph is in RNC?,

¢ Is finding maximum matching in NC ? Open!

e Theorem.
Finding a maximum matching in a
general graph is in quasi-NC.

l

In O((log n)?) time using exp( O((log n)?) ) processors,



Randomized space bounded
computation



Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

o Definition. A language L is in BPL if there’s a PTM M

such that M uses O(log n)-space and for every x €
{0,1}%, Pr[M(x) = L(x)] = 2/3.



Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

o A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x €
{0,1}%, Pr[M(x) = L(x)] = 2/3.

* The success probability can be amplied as before as
the BPP error reduction trick can be implemented
using log-space.



Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

e Definition. A language L is in RL if there’s a PTM M
s.t. M uses O(log n)-space and for every x € {0, }*

x€L == Pr[M(x)=1]=2/3
x¢ZL == Pr[M(x)=0]=1.

e Clearly, RL € NL € P and BPL < BPP.



Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

° BPLC P.

* Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A.  (Assignment problem)



Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

° BPLC P.

* Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A.  (Assignment problem)

* Is BPL = L ? Many believe that the answer is !



Space bounded PTMs

e Theorem. If L € BPL then there’s a
poly-time, O((log n)?)-space TM that decides L.

e Theorem. If L € BPL then there’s a
nO0leen)_time, O((log n)'-*)-space TM that decides L.

* The second result extends Nisan’s techniques.



Randomized reductions



Randomized reduction

° We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = L,(M(x))] = 2/3. < >uccess

probability

* For arbitrary L, and L,, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive.



Randomized reduction

e Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = L,(M(x))] = 2/3.

* For arbitrary L, and L,, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

e Obs. IfL, = L,and L, € BPF then L, € BPF.
(Easy homework)



Randomized reduction

e Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = L,(M(x))] = 2/3.

e Obs. If L, = SAT, then we can boost the success
probability from 2 + |x|<to | — exp(-|x|9).
* Proof idea. BPP error reduction trick + Cook-Levin.
(homework)



Randomized reduction

e Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = L,(M(x))] = 2/3.

e Obs. If L, = SAT, then we can boost the success
probability from 2 + |x|<to | — exp(-|x|9).

* Recall, NP = {L : L = SAT}. It makes sense to define a
similar class using randomized poly-time reduction.



Class BPNP

e Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = L,(M(x))] = 2/3.

e Obs. If L, = SAT, then we can boost the success
probability from 2 + |x|<to | — exp(-|x|9).

e Definition. BPNP = {L : L <. SAT}.

 Class BPNP is also known as AM (Arthur-Merlin
protocol) in the literature.



Class BPNP

e Definition. BPNP ={L :L <_SAT}.

» Observe that NP € BPNP and BPP € BPNP. Is BPNP
= NP ?



Class BPNP

e Definition. BPNP ={L :L <_SAT}.

e Observe that NP € BPNP and BPP € BPNP. Is BPNP
= NP ? Many believe that the answer is “yes’.

e Theorem. If certain reasonable circuit lower bounds
hold, then BENP = NP,

* Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.



Class BPNP

e Definition. BPNP ={L :L <_SAT}.

e Observe that NP € BPNP and BPP € BPNP. Is BPNP
= NP ? Many believe that the answer is “yes’.

* We may further ask:
. Is BPNP in PH? Recall, BPP is in PH.

2. Is SAT € BPNP? Recall, if SAT € BPP then PH
collapses. (SAT € BPNP as NP € BPNP .)



Class BPNP

e Definition. BPNP ={L :L <_SAT}.

e Theorem. BPNP isin ;. (In fact, BENP is in [ |,.)

e Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)



Class BPNP

e Definition. BPNP ={L :L <_SAT}.

e Theorem. BPNP isin ;. (In fact, BENP is in [ ],.)

e Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

* Wondering if BENP C [], implies BENP < >, ? Is
BPNP = co-BPNP ? (Recall, BPP = co-BPP).

o If BENP = co-BPNP then co-NP € BP.NP. The next
theorem shows that this would lead to PH collapse.



Class BPNP

e Definition. BPNP ={L :L <_SAT}.

e Theorem.If SAT € BPNP then PH = ) ; (in fact,PH =
22)-

e Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.  (Assignment problem)



Class BPNP

e Definition. BPNP ={L :L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Thus, even without designing an efficient algorithm
for Gl, we know Gl is unlikely to be NP-complete.



Class BPNP

e Definition. BPNP ={L :L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.

GNI € BPNP.
e Proof. Weé'll prove it.



Class BPNP

e Definition. BPNP ={L :L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.

GNI € BPNP.

o If Gl is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = ) .



Graph Isomorphism in Quasi-P

e Theorem. There’s a deterministic
exp(O((log n)?)) time algorithm to solve the graph
isomorphism problem.



GNI is in BPNP



Graph Non-isomorphism

e Definition. Let G, and G, be two undirected graphs
on n vertices. ldentify the vertices with [n]. We say
G, is isomorphic to G,, denoted G, = G,, if there’s a
bijection/permutation m:[n] —[n] s.t.for all u,v € [n],
(u,v) is an edge in G, if and only if (r(u),m(v)) is an
edge in G,.

e Definition. GNI = {(G,, G,) : G| # G,}.

e Clearly, GNI € co-NF it is not known if GNI| € NPF.



GNI is in BENP

e The idea.

I. Step |: Let x = (G,, G,). Associate a set S, with
(G|, Gy) s.t.|S, | is “large” (2n!) if G, & G,,and [S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n°) bits. Furthermore,
membership in S, can be certified in m°(') = n°() time.




GNI is in BENP

e The idea.

I. Step |: Let x = (G,, G,). Associate a set S, with
(G|, Gy) s.t.|S, | is “large” (2n!) if G, & G,,and [S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n°) bits. Furthermore,
membership in S, can be certified in m°(') = n°() time.

l

There’s a poly-time TM V and a polynomial
function q(.) s.t.
u€s, mIce{0,I}) V(x,u,c
ugS, ™ vcel0, 1390 V(x,u,c

)=
) = 0.




GNI is in BENP

I. Step |: Let x = (G,, G,). Associate a set S, with
(G|, Gy) s.t.|S, | is “large” (2n!) if G, & G,,and [S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n°) bits. Furthermore,
membership in S, can be certified in m°(') = n°() time.

2. Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of b ¢, . is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.




GNIl is in BPNP

o Step |:Let x = (G|, G,). Associate a set S, with (G,
G,) s.t. |S,| is “large” (2n!) if G, # G,, and |S,]| is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n®!) bits. Furthermore,
membership in S, can be certified in m°(') = n°() time.

o Defn. Aut(G) = {bijection m:[n]—[n]: m(G) = G}.

G G

Permutation m = (1,3,2) is in Aut(G).



GNI is in BENP

o Step |:Let x = (G|, G,). Associate a set S, with (G,
G,) s.t. |S,| is “large” (2n!) if G, # G,, and |S,]| is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n®!) bits. Furthermore,
membership in S, can be certified in m°(') = n°() time.

o Defn. Aut(G) = {bijection m:[n]—[n]: m(G) = G}.

o LetS, = {(H,m):H = G, or H= G, and m € Aut(H)}.

o Obs. S, satisfies the properties stated in Step |.



GNI is in BENP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.




GNI is in BENP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) mp Pr [Ty s.t. M(x,y,r) = |] = 2/3
IS,| =n!  (small)mp Pr.[Vy s.t. M(x,y,r) = 0] = 2/3.

/N

r € {0, [ }alx) y € {0, 1}a(x)



GNI is in BENP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.

° There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.
1S,| = 2n! (large) md Pr_ [Ty s.t. M(x,y,r) = |] = 2/3
IS,| =n!  (small)mp Pr.[Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. Uses Goldwasser-Sipser set lower bound
protocol. Ve'll see the proof in a while.



GNI is in BENP

o Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ¢, , s.t. over the randomness

of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) mp Pr [Ty s.t. M(x,y,r) = |] = 2/3

S, =n! (small) mp Pr.[Vy se®(x,y, )= 0] 2 2/3.

We can think of M’s computation as a Boolean circuit 1, (y), which can be computed
in randomized |x|°(") time by fixing x and picking r€{0,1}9™ randomly.




GNI is in BENP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.

° There’s randomized poly-time reduction
that maps x to a Boolean circuit ¢, . s.t.

IS,| = 2n! (large) m» Pr_ [y, (y) is satisfiable] = 2/3
1S,/ = n!  (small) mp Pr [, () is unsatisfiable] = 2/3.




GNI is in BENP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.

° There’s randomized poly-time reduction
that maps x to a CNF ¢, , s.t.

ISy| = 2n! (large) m Pr [}, .(z) is satisfiable] = 2/3
1S,/ =n! (small) mp Pr [, (z) is unsatisfiable] = 2/3.

¢, . is a CNF and z = y + auxiliary variables.



GNI is in BENP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, @, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S is “small”.

° There’s randomized poly-time reduction
that maps x to a CNF ¢, , s.t.

ISy| = 2n! (large) m Pr [}, .(z) is satisfiable] = 2/3
1S,/ =n! (small) mp Pr [, (z) is unsatisfiable] = 2/3.

* Hence, GNI is in BENP. It remains to prove



Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

/

r € {0,130 y € {0,1}a(xD



Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an elementin S,.

The value of k will be
fixed in the analysis.



Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an elementin S,.

» Let t = n®() be sufficiently large. M interprets r as

((i,v)), (i5,v9),..., (iV,)), Where ij,..., i. are indices of
hash functions in H,and v,..., v, are k-bit strings.




Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an elementin S,.

» Let t = n®() be sufficiently large. M interprets r as

((i,v)), (i5,v9),..., (iV,)), Where ij,..., i. are indices of

hash functions in H,and v,..., v, are k-bit strings.
\

Actually, we don’t need v ,..., v, to be random.We can assume these are all 0~




Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an elementin S,.

» Let t = n®() be sufficiently large. M interprets r as

((i,v)), (i5,v9),..., (iV,)), Where ij,..., i. are indices of
hash functions in H,and v,..., v, are k-bit strings.

Ir| = n©W),




Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an elementin S,.

* M interprets y as ((uj,c), (uyc,),..., (u,c.)), where
up,..., u. are m-bit strings, and Cp is an alleged
certificate of u,’s membership in S, for every p € [t].

ly| = ne().



Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an elementin S,.

* For every p € [t]: M uses ¢, & x to check if u, € S,.
If yes, M checks if h; (u;) = v,

Recall, membership in S, can be efficiently certified.



Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an elementin S,.

* For every p € [t]: M uses ¢, & x to check if u, € S,.
If yes, M checks if h; (u;) = v,.If sufficiently many (say,
t*) of these checks pass, M outputs |, else it o/ps 0.



Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an elementin S,.

* For every p € [t]: M uses ¢, & x to check if u, € S,.
If yes, M checks if h; (u;) = v,.If sufficiently many (say,
t*) of these checks pass, M outputs I, else it o/ps O.
Intuitively, 3y s.t. t* of the checks pass iff S, is large.



Set lower bound protocol

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
Se|=n! (small) = Pr [Vys.t. M(x,y,r)=0]=2/3.
 Proof idea. Let H = {h.} be afémily of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an elementin S,.

* For every p € [t]: M uses ¢, & x to check if u, € S,.
If yes, M checks if h; (u;) = v,.If sufficiently many (say,
t*) of these checks pass, M outputs I, else it o/ps O.
Intuitively, 3y s.t. t* of the checks pass iff S, is large.



Pairwise independent hash functions

o Definition. A family H_,, of (hash) functions from
{0,1}™ to {0,I} is pairwise independent if for every
distinct x,x’ € {0,1}™ and for every y,y’ € {0, 1}

Pr [h(x) = yand h(x’) =y'] = 22X

h €. H,




Pairwise independent hash functions

o Definition. A family H_,, of (hash) functions from

{0,1}™ to {0,1}* is pairwise independent if for every
distinct x,x’ € {0,1}™ and for every y,y’ € {0, 1}

Pryc 1, () =yand h(x) = y] = 2%

o Obs. Let H,, be a pairwise independent hash
function family. For every x € {0,1}™ and ye {0, |},

Proen,, [h(x)=y]= 2K,



Pairwise independent hash functions

o Definition. A family H_,, of (hash) functions from
{0,1}™ to {0,I} is pairwise independent if for every
distinct x,x’ € {0,1}™ and for every y,y’ € {0, 1}

Pr [h(x) = yand h(x’) =y'] = 22X

h Er Hm,k

=Prien,, [h(X)=yl.Procy,, [h(X)=YT].




Pairwise independent hash functions

o Definition. A family H_,, of (hash) functions from
{0,1}™ to {0,1}* is pairwise independent if for every
distinct x,x’ € {0,1}™ and for every y,y’ € {0, 1}

Proc v, [h(x) =yand h(x) =y =22
=Prycu, ) =yl.Pric, [h(x)=yT.

o Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1} as elements of F are -
bit strings. For a, b € F define the function h,, as
h,,(x) =ax + b for every x € . Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.




Pairwise independent hash functions

e Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1} as elements of F are -
bit strings. For a, b € F define the function h,, as
h,p(x) = ax + b for every x € . Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

* Proof. Let x, X’ € F be distinct and y, Yy’ € E Then,
h,p(X) =y & h,,(X) =y ifand only if a = (y—y")/(x-X)
and b = (xy’ — x’y)/(x-x).




Pairwise independent hash functions

e Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1} as elements of F are -
bit strings. For a, b € F define the function h,, as
h,p(x) = ax + b for every x € . Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

* Proof. Let x, X’ € F be distinct and y, Yy’ € E Then,
h,p(X) =y & h,,(X) =y ifand only if a = (y—y")/(x-X)
and b = (xy’ — x’y)/(x-x’). Therefore,

Prape r [hap(X) =y & hp(X) = y1]

Proper [2 = (y=y)/(x-X) &b = (xy” — Xy)/(x-X')]

2-2*  (as a and b are independently chosen).




Pairwise independent hash functions

o Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1} as elements of F are -
bit strings. For a, b € F define the function h,, as
h,p(x) = ax + b for every x € . Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

° If m = k, then we can construct a pairwise
independent H_, by considering H_ . as above.
Truncate the output of a function to the first k bits.

(Homework)



Pairwise independent hash functions

o Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1} as elements of F are -
bit strings. For a, b € F define the function h,, as
h,p(x) = ax + b for every x € . Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

° If m = k, then we can construct a pairwise
independent H_, by considering H,, as above.
Generate k-bit i/p for a function by padding with 0.

(Homework)



Set lower bound protocol (contd.)

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

 Proof. Let H,_,,
hash functions.

be a family of pairwise independent



Set lower bound protocol (contd.)

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

e Proof. Let H,, be a family of pairwise independent

m,k
hash functions. Recall, r = ((i;,v|), (i5,v9),..., (ixVy)),
where i,..., i; are indices of functions in H_,, and

Vi,...,V, € {0,1}K



Set lower bound protocol (contd.)

o Lemma *. There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.
 Proof. Let H,_,, be a family of pairwise independent
hash functions. Recall, r = ((i|,v|), (i5,v9),..., (i,V,)),
where i,..., i; are indices of functions in H_,, and
Vi,...,V, € {01} Also, y = ((u,c)), (Uy,Cy),..., (u,c,)),
where u,..., u. € {0,I}™, and c, is an alleged
certificate of u,’s membership in S, for every p € [t].



Set lower bound protocol (contd.)

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.



Set lower bound protocol (contd.)

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| = n!  (small)m Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

e For a fixed p, what is the probability (over the
randomness of i, & v,) that there’s a u, € 5, st
hi (up)=v,! We'll upper & lower bound this
probability.



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,,G,),y & r,and a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| =n! (small)ymp Pr [Vy s.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h ip(uP) = V.

o Simplifying notations. As p is fixed, let hip =h,v, =v

and u, = u.



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x

= (G,,G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3

IS,| =n! (small)ymp Pr [Vy s.t. M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses c, & x to check if u,

€ S,. If yes, M

e Upper bound.
° As H

m,k

checks if h, (u;) = v,

Pr,, [Ju € S, s.t. h(u) = v] < |S,|/2.

is pairwise independent, for every uc{0,|}™

and ve{0,1}%, Pr, [h(u) = v] = 2




Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| =n! (small)mp Pr [Vy s.t. M(x,y,r) = 0] = 2/3.
* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h ip(uP) = V.
e Lower bound. Fix a ve{0, | }* arbitrarily. Then,
Pr, [Ju € S, s.t. h(u) = V]
2 > Pro[h(u)=v] - > Pr,[h(u)=v&h(u)=v]

ues, uu € S,
uzu (by inclusion-exclusion principle)



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

e Lower bound. Fix a ve{0, | }* arbitrarily. Then,
Pr, [Ju € S, s.t. h(u) = V]

> |SX|/2k s |Sx|2 [ 22k+1 (as H,, is pairwise independent)



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
S,|=n! (small)mb Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

e Lower bound. Fix a ve{0, | }* arbitrarily. Then,
Pr, [Ju € S, s.t. h(u) = V]
> |SX|/2k . (| = |SX|/2k+I), (as H,,  is pairwise independent)




Set lower bound protocol (contd.)

o Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

 If |S,| = n! then (by the upper bound)
Pr,, [Qu € S, s.t. h(u) =v] < n!/2k.



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

 If |S,| = n! then (by the upper bound)
Pr,, [Ju € S, s.t. h(u) =v] = n!/2X. Hence,
* Exp, [ {pE[t] : Fuy€ Sy s.t.h(up) = v} 1=t nl2k



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
S,|=n! (small)mb Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

e Choosing k.|Fix k s.t. 22 < 2n! < 2|
* If |S,| = 2n! then (by the lower bound)
Pri, [Ju € S, s.t. h(u) = v] 2 |S;|/2k . (1-|S]/2"*)
> |S,|/2%. %4 = 3/2.n!/2k




Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

e Choosing k. Fix k s.t. 22 < 2n! < 2k,
* If |S,| = 2n! then (by the lower bound)

Pr,, [Ju € S, s.t. h(u) =v] = 3/2 .n!/2X. Hence,
* Exp, [ [{p€[t] : Fu,€ S, s.t.hi(uy) = v,}| T2 3/2.t.nl/2k



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3

S| = n!

(small) m» Pr [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

o If |S,
Exp,
o If |S,
Exp,

= 2n!

[ [{peE[t]
=nlt

[ [{PE[t]

then
13up€ st hy (up) = vp} 12 3/2.¢.nl2%

NeEN

:3u,€ S, st h; (uy) = v} 1< tnl2k



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3

S| = n!

(small) m» Pr [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

o If |S,
Exp,
o If |S,
Exp,

= 2n!

[ [{peE[t]
=nlt

[ [{PE[t]

then

13up€ st hy (up) = vp} 12 3/2.¢.nl2%
Nen I gap
:3u,€ S, st h; (uy) = v} 1< tnl2k




Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.[=n! (small)m Pr [Vys.t M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u,
€ S,. If yes, M checks if h, (u;) = v,.

o If |S,| = 2n!, by Chernoff bd. & n!/2< € [1/8,1/4],
Pr.[{p€[t] : Ju,€ S s.t.h; (up) =v,}| 2 1.4.¢.nl/2] 2 2/3.
o If |S,| = n!, by Chernoff/Markov bd. & n!/2*€[1/8,1/4]
Pr. [I{p€[t] : Fu € S, s.t.h; (uy) = vp}| < 1.4.€.n!/24] 2 2/3.



Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
S,|=n! (small)mb Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes, M checks if h, (u;) = v,. |t*=1.4.t.n!/2"

o If |S,| = 2n!, by Chernoff bd. & n!/2< € [1/8,1/4],
Pr.[{p€[t] : Ju,€ S s.t.h; (up) =v,}| 2 1.4.¢.nl/2] 2 2/3.
o If |S,| = n!, by Chernoff/Markov bd. & n!/2*€[1/8,1/4]
Pr. [I{p€[t] : Fu € S, s.t.h; (uy) = vp}| < 1.4.€.n!/24] 2 2/3.

P




Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
S,|=n! (small)mb Pr. [Vy s.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes, M checks if h, (u;) = v,. |t*=1.4.t.n!/2"

o If |S,| = 2n! then

Pr.[{p€[t] : Ju € S, s.t.h; (up) = v,}| 2 t¥] 2 2/3.
o If |S, | = n! then

Pr.[{p€[t] : Ju € S, s.t.h; (u,) = v, }| < t¥] 2 2/3.

P




Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] = 2/3
IS,| =n! (small)ymp Pr [Vy s.t. M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses c, & x to check if u

€ S,. If yes, M checks if h ip(uP) = V.
o If |S,| = 2n! then

Pr.[3y s.t. M(x,y,r) = |] 2 2/3.
o If |S, | = n! then

Pr.[Vy s.t. M(x,y,r) = 0] =2 2/3.

t* = |.4.t.n!/2k

P



