Computational Complexity Theory

Lecture 2: Class NP, NP-completeness
Cook-Levin theorem

Department of Computer Science,
Indian Institute of Science

Complexity class NP

Complexity Class NP

 Solving a problem is generally harder than verifying a
given solution to the problem.

e Class NP captures the set of decision problems
whose solutions are efficiently verifiable.

Complexity Class NP

 Solving a problem is generally harder than verifying a
given solution to the problem.

e Class NP captures the set of decision problems
whos%solutions are efficiently verifiable.

Nondeterministic polynomial-time

Complexity Class NP

o Definition. A language L € {0,l}* is in NP if there’s a

polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

x€EL = Ju €{0,IPPXD st M(x,u) =1

Complexity Class NP

o Definition. A language L € {0,l}* is in NP if there’s a

polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

x€EL e Ju €{0,IPPD st M(x,u) =1

-

u is called a certificate or witness
for x (w.r.t Land M),if x € L.

Complexity Class NP

° A language L < {0,1}* is in NP if there’s a
polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

x€EL = Ju €{0,IPPXD st M(x,u) =1

e |t follows that verifier M cannot be fooled !

Complexity Class NP

° A language L < {0,1}* is in NP if there’s a
polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

x€EL = Ju €{0,IPPXD st M(x,u) =1

* Class NP contains those problems (languages) which
have such efficient verifiers.

Class NP : Examples

e Vertex cover

» Given a graph G and an integer k, check if G has a vertex
cover of size k.

Class NP : Examples

e Vertex cover

e 0/l integer programming

» Given a system of linear (in)equalities with integer
coefficients, check if there’s a 0-1 assighment to the
variables that satisfy all the (in)equalities.

Class NP : Examples

* Vertex cover
e 0/l integer programming

* Integer factoring

» Given two numbers n and U, check if n has a prime factor
less than or equal to U.

Class NP : Examples

* Vertex cover
e 0/l integer programming
* Integer factoring

e Graph isomorphism

» Given two graphs, check if they are isomorphic.

Class NP : Examples

e 2-Diophantine solvability

» Given three integers a, b and c, check if the equation ax? +
by + ¢ = 0 has a solution (x, y), where both x and y are
positive integers.

: Show that the above problem is in NP.

Is P = NP ?
e Obviously, P € NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

Is P = NP ?
e Obviously, P € NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

* Solving a problem does seem harder than verifying
its solution, so most people believe that P # NP,

Is P = NP ?
e Obviously, P € NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

* P = NP has many weird consequences, and if true,
will pose a serious threat to secure and efficient
cryptography (and e-commerce).

Is P = NP ?
e Obviously, P € NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

e Mathematics has gained much from attempts to
prove such “negative” statements—Galois theory,
Godel’s incompleteness, Fermat’s Last Theorem,
Turing’s undecidability, Continuum hypothesis etc.

Is P = NP ?
e Obviously, P € NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

» Complexity theory has several of such intriguing
unsolved questions.

— survey by Michael Sipser (1992)

Reductions

Polynomial-time reduction

o Definition. We say a language L, < {0,1}* is polynomial-
time (Karp) reducible to a language L, € {0, }* if there’s
a polynomial-time computable function f s.t.

XEL| Y f(X)ELZ

b

.

Polynomial-time reduction

o Definition. We say a language L, < {0,1}* is polynomial-
time (Karp) reducible to a language L, € {0, }* if there’s
a polynomial time computable function f s.t.

XEL| L f(X)ELZ

* Notation. L, =, L,

o Observe. IfL; =) L,andL, =, Lythenl, =, L;.

NP-completeness

e Definition. A language L is NP-hard if for every L in
NP L = L. Further, L is NP-complete if L' is in NP
and is NP-hard.

o Observe. If L' is NP-hard and L is in P then P = NP. If
L is NP-complete then L in P if and only if P = NP.

— Hardest problems inside NP in the sense
that if one NPC problem is in P then all
NP problemsin NP is in P.

(U

NP-completeness

e Definition. A language L is NP-hard if for every L in
NF L =, L. Further, L is NP-complete if L' is in NP
and is NP-hard.

o Observe. If L' is NP-hard and L is in P then P = NP. If
L is NP-complete then L in P if and only if P = NP.

o Let L, < {0,1}* be any language and L,
be a language in NP If L, =, L, then L, is also in NP

Few words on reductions

* As to how we define a reduction from one language
to the other (or one function to the other) is usually
guided by a guestion on whether two complexity classes
are different or identical.

* For polynomial-time reductions, the question is
whether or not P equals NF.

* Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Class NP : Examples

e Vertex cover (NP-complete)

e 0/l integer programming (NP-complete)
e 3-coloring planar graphs (NP-complete)
e 2-Diophantine solvability (NP-complete)

e Integer factoring (unlikely to be NP-complete)

e Graph isomorphism (Quasi-P) Babai 2015

How to show existence of an NPC
problem!?

e Let L ={(a,x, I™ I*): there exists a u €{0,l}™ s.t. M,
accepts (x, u) in t steps }

o L' is NP-complete.

* The language L involves Turing machine in its definition.
Next, we’'ll see an example of an NP-complete problem
that is arguably more natural.

A natural NP-complete problem

° A Boolean formula on variables x,, ..., x
consists of AND, OR and NOT operations.

e.g ¢ =(x; VX)) A(X3V 7x;)

n

o A Boolean formula ¢ is satisfiable if there’s a
{0, | }-assignment to its variables that makes ¢ evaluate
to |.

A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ = (X VX)) A(X3V 7%y)
| J | J

.

clauses

A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ = (X VX)) A(x3V 7xy)

V4

literals

A natural NP-complete problem

o A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ =(x; VX)) A(X3V 7x;)

° Let SAT be the language consisting of all
satisfiable CNF formulae.

A natural NP-complete problem

o A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ =(x; VX)) A(X3V 7x;)

° Let SAT be the language consisting of all
satisfiable CNF formulae.

o (Cook 1971, Levin 1973) SAT is NP-complete.

A natural NP-complete problem

o A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ =(x; VX)) A(X3V 7x;)

° Let SAT be the language consisting of all
satisfiable CNF formulae.

o (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP,
Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

 Let L € NP We intend to come up with a polynomial-
time computable function f: x s ¢, s.t,

> x€EL e ¢ e SAT

Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

 Let L € NP We intend to come up with a polynomial-
time computable function f: x s ¢, s.t,

> x€EL e ¢ e SAT

Notation: |¢,| := size of ¢,

= number of V or A in ¢,

Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P(x) s.t. M(x,u) = |

Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P(x) s.t. M(x,u) = |

* Idea: For any fixed x, capture the computation of M(x,
..) by a CNF ¢, such that

Ju €{0,1}PD st. M(x,u) =1 4= ¢ _is satisfiable

Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P(x) s.t. M(x,u) = |

* Idea: For any fixed x, capture the computation of M(x,
..) by a CNF ¢, such that

Ju €{0,1}PXD st. M(x,u) =1 4= ¢ _is satisfiable

 For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |u].

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢ (u, “auxiliary variables™) of size
poly(T(n)) such that for any fixed u, ¢(u,
“auxiliary variables™) is satisfiable as a function of
the “auxiliary variables” if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N and n.

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢ (u, “auxiliary variables™) of size
poly(T(n)) such that for any fixed u, ¢(u,
“auxiliary variables™) is satisfiable as a function of
the “auxiliary variables” if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N and n.

e O(u, “auxiliary variables™) is satisfiable as a function of all
variables if and only if Ju s.t N(u) =1.

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢ (u, “auxiliary variables™) of size
poly(T(n)) such that for any fixed u, ¢(u,
“auxiliary variables™) is satisfiable as a function of
the “auxiliary variables” if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N and n.

e Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit W of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. W is computable in time poly(T(n)) from N & n.

o “Convert” circuit U to a CNF ¢ efficiently by
introducing auxiliary variables.

Main theorem: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

Main theorem: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

* A step of computation of N consists of
» Changing the content of the current cell

» Changing state

» Changing head position

Main theorem: Step |

e Assume

(w.l.o.g) that N has a single tape and it writes

its output on the first cell at the end of computation.

* A step of computation of N consists of

» C
» C
» C

hanging the content of the current cell

nanging state

hanging head position

e Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.

Main theorem: Step |

a cell

A compound tape

Main theorem: Step |

h =1 if head points to this cell
=0 otherwise

a cell

A compound tape

Main theorem: Step |

0/1 bit content of this cell
A

a cell

A compound tape

Main theorem: Step |

Current state when h = |

AN

.
Q b h

a cell

A compound tape

Main theorem: Step |

Constant number of bits

)

a cell

A compound tape

Main theorem: Step |

* Computation of N on inputs of length n can be
completely described by a sequence of T(n)
compound tapes, the i-th of which captures a
‘snapshot’ of N’s computation at the i-th step.

a cell

A compound tape

Main theorem: Step |

qstart

u

a cell

first input bit

/

A compound tape

Main theorem: Step |

Qstart u 0

stare | U; | | a cell

A compound tape

Main theorem: Step |

T(n)

< T(n) cells
qaccept O/P I

Qstart l u l 0

Jstart lu, l I a cell

A compound tape

Main theorem: Step |

* h;; = | iff head points to cell jat i-th step
* b;; = bit content of cell j at i-th step
* q;; = asequence of log |Q] bits which contains the
current state info if h;; = |; otherwise we don’t care
qdi,i bi,j hi,j

Main theorem: Step |

* Locality of computation: The bits in h,

b,; and q;; depend only on the bits in
» hiyis by Qo
> hirps Bty Qieryys
> hi-l,j+| ’ |Di-l,j+| ’ CIi-l,j+|

Sk

[qdi, bm hu
/ T \
i- e th}JbLMJ hLMJ 91, thj hpu qhu+4bhhﬁl hpu+|
L J L J L J

Y Y T
cell j-1 cellj cell j+1

Main theorem: Step |

* Locality of computation: The bits in h;,
b,; and q;; depend only on the bits in
> hi-l,j-l , bi-l,j-l » Qo1 j-1
» hi-l,j’ bi-l,j’ qi-1,i »

> hi-l,j+| ; bi-l,j+| » Qg j+1

Main theorem: Step |

Output of W

|
T(n) qaccept‘ 0/P‘ |

A

a cell

|
Input u-variables of W

Circuit Y

Main theorem: Step |

Output of W

|
T(n) qaccept‘ 0/P‘ |

A A

a cell

|
Input u-variables of W

Observe: Y(u) = | iff N(u) = |

Recall Steps | and 2

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit W of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. W is computable in time poly(T(n)) from N & n.

o “Convert” circuit Y to a CNF ¢ efficiently by
introducing auxiliary variables.

Main theorem: Step 2

* Think of h;;, b;; and the bits of q;; as formal

Lj?)

Boolean variables.

auxiliary variables

Main theorem: Step 2

* Locality of computation: The variables h;;, b;
and q;; depend only on the variables
> hi-l,j-l , bi-l,j-l » Qo1 j-1
» hi-l,j’ bi-l,j’ qi-1,; ,and
> hi-l,j+| ; bi-l,j+| » Qi j+1

i- e th}JbLMJ hLMJ 91, thj hpu th+IbLLHI hpu+|

L J L J L J

Y Y T
cell j-1 cellj cell j+1

Main theorem: Step 2

* Hence,
b = B.j(hu Lj-1 s b;. Li-1 > Qi-1,j-1 ’hi-l,j’ bi-l,j’ qi-1, ’hi-l,j+l : bi-l,j+| ’ qi-l,j+|)
= a fixed function of the arguments depending only

on N’s transition function 0.

* The above equality can be captured by a constant size
CNF ¥, . Also, ¥; is easily computable from 0.

Main theorem: Step 2

e Similarly,
hij = Hij(hi-l,j-l » Bicjrs Qi s hiags by Qs hiers b qi-l,j+|)
= a fixed function of the arguments depending only

on N’s transition function 0.

* The above equality can be captured by a constant size
CNF @, . Also, ®; is easily computable from 0.

Main theorem: Step 2

e Similarly,

Qijk = Cijk(hi-l,j-l » Bijrs Qinr s hiags By Qi hiers b qi-l,j+|)
= a fixed function of the arguments depending only

k-th bit of q; where | < k < log|Q|

on N’s transition function 0.

* The above equality can be captured by a constant size
CNF 6, . Also, 6, is easily computable from 0.

ijlkk

Main theorem: Step 2

* Let A be the conjunction of ¥, ®; and 6, for all i,j,

ij jk
k.
> i €[, T(n)],
> je[l,T(n)],and

> k€[l log|Q]]

e Ais a CNF in the u-variables and the auxiliary variables.
Size of A is O(T(n)?).

Main theorem: Step 2

* Let A be the conjunction of ¥, ®; and 6, for all i,j,

ij jk
k.
> i €[, T(n)],
> je[l,T(n)],and

> k€[l log|Q]]

e Ais a CNF in the u-variables and the auxiliary variables.
Size of A is O(T(n)?).

* Define § = A A by,

Main theorem: Step 2

° An assighment to u and the auxiliary variables
satisfies A if and only if it “captures” computation of N
on the assigned input u and N(u) = I.

Main theorem: Step 2

° An assighment to u and the auxiliary variables
satisfies A if and only if it “captures” computation of N
on the assigned input u and N(u) = I.

* Hence, an assighment to u and the auxiliary variables
satisfies ¢ if and only if N(u) = I.

¢ (u, “auxiliary variables”) € SAT 4= N(u) =1.

Main theorem: Comments

o ¢ is a CNF of size O(T(n)?) and is also computable
from N and n in O(T(n)?) time.

e With some more effort, size ¢ can be
brought down to O(T(n). log T(n)).

o The reduction from N, u to ¢(u, ...) is not
just a poly-time reduction, it is actually a log-space
reduction (we’ll define this later).

Main theorem: Comments

* ¢ is a function of u (the input) and some “auxiliary
variables” (the b; h; and g, variables).

* Observe that once u is fixed the values of the “auxiliary
variables” are also determined in any satisfying
assignment for ¢.

» Each clause of ¢ has only constantly many
literals!

3S5AT is NP-complete

° A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNF O =(x;V xy)) A (X3V 1%5)

o k-SAT is the language consisting of all
satisfiable k-CNFs.

3S5AT is NP-complete

° A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNF O =(x;V xy)) A (X3V 1%5)

o k-SAT is the language consisting of all
satisfiable k-CNFs.

o 3-SAT is NP-complete.

Proof sketch: (x; V x, V x3V =1x,) is satisfiable iff (x,
V X, Vz) A (X3V x4 V 7Z) is satisfiable.

