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Recap:  Cook-Levin Theorem 
y Definition. A Boolean formula is in Conjunctive Normal 

Form (CNF) if it is an AND of OR of literals.  
             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 
y Definition. Let SAT be the language consisting of all 

satisfiable CNF formulae.  
 

y Theorem. (Cook 1971, Levin 1973) SAT is NP-complete. 
 
 



Recap:  Cook-Levin Theorem 
y Let L ∈ NP.  We intend to come up with a polynomial-

time computable function f:  x        ϕx   s.t., 
               x ∈ L          ϕx ∈ SAT   
 
y Language L has a poly-time verifier M such that 
              x∈L         ∃u ∈{0,1}p(|x|)  s.t.  M(x, u) = 1 

 
 



Recap:  Cook-Levin Theorem 
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Observe:  ψ(u) = 1 iff N(u) = 1 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 

…. …. T(n) qaccept   o/p   1 
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…. 

Input u-variables of ψ 
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Recap:  Cook-Levin Theorem 
y Let L ∈ NP.  We intend to come up with a polynomial 

time computable function f:  x        ϕx   s.t., 
               x ∈ L          ϕx ∈ SAT   
 
y Language L has a poly-time verifier M such that 
              x∈L         ∃u ∈{0,1}p(|x|)  s.t. ψx(u) = 1 

 
ψx is a poly(|x|)-time computable 



Recap:  Cook-Levin Theorem 
y Let L ∈ NP.  We intend to come up with a polynomial 

time computable function f:  x        ϕx   s.t., 
               x ∈ L          ϕx ∈ SAT   
 
y Language L has a poly-time verifier M such that 
              x∈L        ψx(u) is satisfiable 

 
y Important note: A satisfying assignment u for ψx 

trivially gives a certificate u such that M(x, u) = 1. 
 



Recap:  Cook-Levin Theorem 
y Let L ∈ NP.  We intend to come up with a polynomial 

time computable function f:  x        ϕx   s.t., 
               x ∈ L          ϕx ∈ SAT   
 
y Language L has a poly-time verifier M such that 
              x∈L        ψx(u) is satisfiable 

 
A circuit but not a CNF ! 



Recap:  Cook-Levin Theorem 
y From circuit to CNF.  From circuit ψ construct a CNF  
ϕ by introducing some extra variables v such that 
 

           ψ(u) = 1  iff  ϕ(u, v) is satisfiable.  
 

y ψ and ϕ are not equivalent formulas! 
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y From circuit to CNF.  From circuit ψ construct a CNF  
ϕ by introducing some extra variables v such that 
 

           ψ(u) = 1  iff  ϕ(u, v) is satisfiable.  
 

y Language L has a poly-time verifier M such that 
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Recap:  Cook-Levin Theorem 
y From circuit to CNF.  From circuit ψ construct a CNF  
ϕ by introducing some extra variables v such that 
 

           ψ(u) = 1  iff  ϕ(u, v) is satisfiable.  
 

y Language L has a poly-time verifier M such that 
      x∈L         ϕx(u, v) ∈ SAT  
 
y Important note: A satisfying assignment (u, v) for ϕx 

trivially gives a certificate u such that M(x, u) = 1. 
 



Recap: 3SAT is NP-complete 
y Definition. A CNF is a called a k-CNF if every clause 

has at most k literals. 
             e.g.    a 2CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 
y Definition. k-SAT is the language consisting of all 

satisfiable kCNFs.  
 

y Theorem.  3-SAT is NP-complete.  
 Proof sketch:   (x1 ∨ x2 ∨ x3 ∨ ¬x4 ) is satisfiable iff   (x1 
∨ x2 ∨ z) ∧ ( x3 ∨ ¬x4 ∨ ¬z) is satisfiable. 

 
 



      More NP-complete problems 



NP complete problems:  Examples 

y Independent Set 
y Clique 
y Vertex cover   
y 0/1 integer programming  
y Max-Cut  (NP-hard) 

 

 

y 3-coloring planar graphs    Stockmeyer 1973 
y 2-Diophantine solvability   Adleman & Manders 1975 
 

Karp 1972 

Ref:  Garey & Johnson,  “Computers and Intractability”  1979 



NPC problems from number theory 

y SqRootMod: Given natural numbers a, b and c, check 
if there exists a natural number x ≤ c such that  

                       x2  =  a  (mod  b) .   
 
y Theorem:   SqRootMod is NP-complete. 
                              Manders & Adleman 1976 



NPC problems from number theory 

y Variant_IntFact : Given natural numbers L, U and N, 
check if there exists a natural number d ∈ [L, U] 
such that d divides N. 
 

y Claim: Variant_IntFact is NP-hard under randomized 
poly-time reduction. 
 

y Reference: 
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785 



A peculiar NP problem 

y Minimum Circuit Size Problem (MCSP):  Given the 
truth table of a Boolean function f and an integer s, 
check if there is a circuit of size ≤ s that computes f. 
 

y Easy to see that MCSP is in NP. 
 

y Is  MCSP  NP-complete?  Not known!  



Example 1:  Independent Set 

y INDSET := {(G, k): G has independent set of size k} 
 

y Goal:  Design a poly-time reduction f s.t. 
 

 
y Reduction from 3SAT: Recall, a reduction is just an 

efficient algorithm that takes input a 3CNF ϕ and 
outputs a (G, k) tuple s.t  
 

x ∈ 3SAT           f(x) ∈ INDSET 

ϕ ∈ 3SAT           (G, k) ∈ INDSET 



Example 1:  Independent Set 

y Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 



Example 1:  Independent Set 

y Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

For every clause Ci form a complete 
graph (cluster) on 7 vertices 

A vertex stands for a partial 
assignment of the variables in 
Ci that satisfies the clause 



Example 1:  Independent Set 

y Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

Ci 

C1 Cm 

Add an edge between two 
vertices in two different clusters if 
the partial assignments they stand 
for are incompatible. 



Example 1:  Independent Set 

y Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

Ci 

C1 Cm 

Graph G on 7m vertices 



Example 1:  Independent Set 

y Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 
 
 
 
 
 
 

y Obs: ϕ is satisfiable iff G has an ind. set of size m. 

Ci 

C1 Cm 



Example 2:  Clique 

y CLIQUE := {(H, k): H has a clique of size k} 
 

y Goal:  Design a poly-time reduction f s.t. 
 

 
y Reduction from INDSET: The reduction algorithm 

computes G from G 
 

x ∈ INDSET           f(x) ∈ CLIQUE 

(G, k) ∈ INDSET           (G, k) ∈ CLIQUE 



Example 3:  Vertex Cover 

y VCover := {(H, k): H has a vertex cover of size k} 
 

y Goal:  Design a poly-time reduction f s.t. 
 

 
y Reduction from INDSET: Let n be the number of 

vertices in G. The reduction algorithm maps (G, k) to 
(G, n-k). 
 

x ∈ INDSET           f(x) ∈ VCover 

(G, k) ∈ INDSET           (G, n-k) ∈ VCover 



Example 4:  0/1 Integer Programming 

y 0/1 IProg := Set of satisfiable 0/1 integer programs  
y A 0/1 integer program is a set of linear inequalities 

with rational coefficients and the variables are 
allowed to take only 0/1 values. 

 
y Reduction from 3SAT: A clause is mapped to a linear 

inequality as follows 
 

x1 ∨ x2 ∨ x3                 x1 + (1- x2) + x3  ≥  1 



Example 5: Max Cut 

y MaxCut : Given a graph find a cut with the max size. 
y A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V.  Size of a 

cut (U, V\U) is the number of edges from U to V\U. 
 

y MinVCover: Given a graph H, find a vertex cover in 
H that has the min size. 
 

y Obs: From MinVCover(H), we can readily check if (H, 
k) ∈ VCover, for any k.   
 
 



Example 5: Max Cut 

y MaxCut : Given a graph find a cut with the max size. 
y A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V.  Size of a 

cut (U, V\U) is the number of edges from U to V\U. 
 

y Goal: A poly-time reduction from MinVCover to 
MaxCut. 
 

   Size of a MaxCut(G)  =  2.|E(H)| - |MinVCover(H)| 
 

    H                 G    s.t. 
f 



Example 5: Max Cut 

y The reduction: 
 
 
 
 
 
 

y G is formed by adding a new vertex w and adding 
degH(u) – 1 edges between every u ∈ V(H) and w. 
 

    H                 G    
f 

u u 

w 

degH(u) – 1 edges 
between u and w 

H G 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
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y Let SG(U) = no. of edges in G with exactly one end 

vertex incident on a vertex in U. 
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y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Let SG(U) = no. of edges going out of U in G. 

 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Let SG(U) = size of the cut (U, V\U + w). 

 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Let SH(U) = no. of edges in H with exactly one end 

vertex incident on a vertex in U. 
 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Then SG(U) = SH(U) + Σ (degH(u) – 1) 
                      
                    = SH(U) + ΣdegH(u) – |U| 

 

u∈U 

u∈U 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Then SG(U) = SH(U) + Σ (degH(u) – 1) 
                      
                    = SH(U) + ΣdegH(u) – |U| 

 

u∈U 

u∈U 

Obs: Twice the number of 
edges in H with at least one 
end vertex in U. 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Then SG(U) = SH(U) + Σ (degH(u) – 1) 
                      
                    = SH(U) + ΣdegH(u) – |U| 
 
    = 2.|EH(U)| - |U| 

 

u∈U 

u∈U 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Then SG(U) = 2.|EH(U)| - |U| 

 
y Proposition: If (U, V\U + w) is a max cut in G then U 

is a vertex cover in H. 
 

 

… Eqn (1) 
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       SG(U) = |MaxCut(G)| = 2.|E(H)| - |U| 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Then SG(U) = 2.|EH(U)| - |U| 

 
y Proposition: If (U, V\U + w) is a max cut in G then U 

is a vertex cover in H. 
 

 

… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |U| 

U must be a minVCover in H 



Example 5: Max Cut 

y Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
y Proof: Let V(H) = V.   Then V(G) = V + w.  
   Suppose (U, V\U + w) is a cut in G. 
    
y Then SG(U) = 2.|EH(U)| - |U| 

 
y Proposition: If (U, V\U + w) is a max cut in G then U 

is a vertex cover in H. 
 

 

… Eqn (1) 

Thus, the proof of the above claim follows from the proposition 



Example 5: Max Cut 

y Proof of the Proposition: Suppose U is not a vertex 
cover 
 
 

 

u 

v 
w 

degH(u)-1 edges 

U 

V\U + w 



Example 5: Max Cut 

y Proof of the Proposition: Suppose U is not a vertex 
cover 
 
 

 
u 

v 
w 

Gain:  degH(u)-1 + 1 edges 
Loss:  At most degH(u)-1 edges, these are the edges going from U to u 
Net gain:  At least 1 edge. Hence the cut is not a max cut. 

U 

V\U + w 



Search versus Decision 



Search version of NP problems 
y Recall:   A language L ⊆ {0,1}* is in NP if 
¾ There’s a poly-time verifier M such that 
¾ x∈L iff there’s a poly-size certificate u s.t M(x, u) = 1 
 

• Search version of L:  Given an input x ∈ {0,1}*, find a u 
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 
 

 



Search version of NP problems 
y Recall:   A language L ⊆ {0,1}* is in NP if 
¾ There’s a poly-time verifier M such that 
¾ x∈L iff there’s a poly-size certificate u s.t M(x ,u) = 1 
 

• Search version of L:  Given an input x ∈ {0,1}*, find a u 
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 
 

• Example:  Given a 3CNF ϕ, find a satisfying assignment 
for ϕ if such an assignment exists. 

 



Decision versus Search 
y Is the search version of an NP-problem more difficult 

than the corresponding decision version? 



Decision versus Search 
y Is the search version of an NP-problem more difficult 

than the corresponding decision version? 
 

y Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 



Decision versus Search 
y Is the search version of an NP-problem more difficult 

than the corresponding decision version? 
 

y Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 
 

y Proof.   (search       decision)  Obvious.  
 



Decision versus Search 
y Is the search version of an NP-problem more difficult 

than the corresponding decision version? 
 

y Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 
 

y Proof.   (decision        search)  We’ll prove this for  
                                                L = SAT first. 

 



SAT is downward self-reducible 
y Proof.  (decision      search)  Let L = SAT,  and A be a 

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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SAT is downward self-reducible 
y Proof.  (decision      search)  Let L = SAT,  and A be a 

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
 

y We can find a satisfying assignment of ϕ with at most 2n 
calls to A. 
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B be a poly-time algorithm to decide if x∈L. 
 



Decision ≡ Search for NPC problems 

y Proof. (decision       search)  Let L be NP-complete,  and 
B be a poly-time algorithm to decide if x∈L. 
 

SAT  ≤p  L L  ≤p  SAT 



Decision ≡ Search for NPC problems 

y Proof. (decision       search)  Let L be NP-complete,  and 
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Decision ≡ Search for NPC problems 

y Proof. (decision       search)  Let L be NP-complete,  and 
B be a poly-time algorithm to decide if x∈L. 
 

SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

From Cook-Levin theorem, we can 
find a certificate of x∈L from a 
satisfying assignment of ϕx. 
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Decision ≡ Search for NPC problems 

y Proof. (decision       search)  Let L be NP-complete,  and 
B be a poly-time algorithm to decide if x∈L. 
 

SAT  ≤p  L L  ≤p  SAT 

x             ϕx 
ϕ           f(ϕ) 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is any a poly-time decider for SAT 
 
Take    A(ϕ)  =  B( f(ϕ) ). 
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Probably not! 



Decision versus Search 
y Is search equivalent to decision for every NP problem? 

 
y Let EE = ∪ DTIME (2c.2  )    and  
      
      NEE = ∪ NTIME (2c.2  ) 

 
 

y Class NTIME(T(n)) will be defined formally in the next 
lecture. 

c ≥ 0 

n 

c ≥ 0 

n 

Doubly exponential 
analogues of P and NP 



Decision versus Search 
y Is search equivalent to decision for every NP problem? 

 
y Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 

there’s a language in NP for which search does not 
reduce to decision. 
 



Decision versus Search 
y Is search equivalent to decision for every NP problem? 

 
y Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 

there’s a language in NP for which search does not 
reduce to decision. 
 

y Sometimes, the decision version of a problem can be 
trivial but the search version is possibly hard. E.g., 
Computing Nash Equilibrium (see class PPAD).  
 

Homework:  Read about total NP functions 



Two types of poly-time reductions 

y Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 
y Definition. A language L1 ⊆ {0,1}* is polynomial-time 

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 



Two types of poly-time reductions 

y Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 
y Definition. A language L1 ⊆ {0,1}* is polynomial-time 

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 
Will be called an Oracle later 



Two types of poly-time reductions 

y Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 
y Definition. A language L1 ⊆ {0,1}* is polynomial-time 

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 
Karp reduction  implies  Cook reduction 



Two types of poly-time reductions 

y Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 
y Definition. A language L1 ⊆ {0,1}* is polynomial-time 

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 
Homework:  Read about Levin reduction 


