
Computational Complexity Theory

Lecture 3: NP-complete problems,
 Search versus Decision

Department of Computer Science,
Indian Institute of Science

Recap: Cook-Levin Theorem
y Definition. A Boolean formula is in Conjunctive Normal

Form (CNF) if it is an AND of OR of literals.
 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

y Definition. Let SAT be the language consisting of all

satisfiable CNF formulae.

y Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Recap: Cook-Levin Theorem
y Let L ∈ NP. We intend to come up with a polynomial-

time computable function f: x ϕx s.t.,
 x ∈ L ϕx ∈ SAT

y Language L has a poly-time verifier M such that
 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Recap: Cook-Levin Theorem

…. ….

Observe: ψ(u) = 1 iff N(u) = 1

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

Output of ψ

….

Input u-variables of ψ

Recap: Cook-Levin Theorem

…. ….

Observe: ψx(u) = 1 iff M(x,u) = 1

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

Output of ψx

….

Input u-variables of ψx

Recap: Cook-Levin Theorem
y Let L ∈ NP. We intend to come up with a polynomial

time computable function f: x ϕx s.t.,
 x ∈ L ϕx ∈ SAT

y Language L has a poly-time verifier M such that
 x∈L ∃u ∈{0,1}p(|x|) s.t. ψx(u) = 1

ψx is a poly(|x|)-time computable

Recap: Cook-Levin Theorem
y Let L ∈ NP. We intend to come up with a polynomial

time computable function f: x ϕx s.t.,
 x ∈ L ϕx ∈ SAT

y Language L has a poly-time verifier M such that
 x∈L ψx(u) is satisfiable

y Important note: A satisfying assignment u for ψx

trivially gives a certificate u such that M(x, u) = 1.

Recap: Cook-Levin Theorem
y Let L ∈ NP. We intend to come up with a polynomial

time computable function f: x ϕx s.t.,
 x ∈ L ϕx ∈ SAT

y Language L has a poly-time verifier M such that
 x∈L ψx(u) is satisfiable

A circuit but not a CNF !

Recap: Cook-Levin Theorem
y From circuit to CNF. From circuit ψ construct a CNF
ϕ by introducing some extra variables v such that

 ψ(u) = 1 iff ϕ(u, v) is satisfiable.

y ψ and ϕ are not equivalent formulas!

Recap: Cook-Levin Theorem
y From circuit to CNF. From circuit ψ construct a CNF
ϕ by introducing some extra variables v such that

 ψ(u) = 1 iff ϕ(u, v) is satisfiable.

y Language L has a poly-time verifier M such that
 x∈L ∃u ∈{0,1}p(|x|) s.t. ϕx(u, v) is satisfiable

Recap: Cook-Levin Theorem
y From circuit to CNF. From circuit ψ construct a CNF
ϕ by introducing some extra variables v such that

 ψ(u) = 1 iff ϕ(u, v) is satisfiable.

y Language L has a poly-time verifier M such that
 x∈L ϕx(u, v) ∈ SAT

y Important note: A satisfying assignment (u, v) for ϕx

trivially gives a certificate u such that M(x, u) = 1.

Recap: 3SAT is NP-complete
y Definition. A CNF is a called a k-CNF if every clause

has at most k literals.
 e.g. a 2CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

y Definition. k-SAT is the language consisting of all

satisfiable kCNFs.

y Theorem. 3-SAT is NP-complete.
 Proof sketch: (x1 ∨ x2 ∨ x3 ∨ ¬x4) is satisfiable iff (x1
∨ x2 ∨ z) ∧ (x3 ∨ ¬x4 ∨ ¬z) is satisfiable.

 More NP-complete problems

NP complete problems: Examples

y Independent Set
y Clique
y Vertex cover
y 0/1 integer programming
y Max-Cut (NP-hard)

y 3-coloring planar graphs Stockmeyer 1973
y 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, “Computers and Intractability” 1979

NPC problems from number theory

y SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x ≤ c such that

 x2 = a (mod b) .

y Theorem: SqRootMod is NP-complete.
 Manders & Adleman 1976

NPC problems from number theory

y Variant_IntFact : Given natural numbers L, U and N,
check if there exists a natural number d ∈ [L, U]
such that d divides N.

y Claim: Variant_IntFact is NP-hard under randomized
poly-time reduction.

y Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

A peculiar NP problem

y Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

y Easy to see that MCSP is in NP.

y Is MCSP NP-complete? Not known!

Example 1: Independent Set

y INDSET := {(G, k): G has independent set of size k}

y Goal: Design a poly-time reduction f s.t.

y Reduction from 3SAT: Recall, a reduction is just an

efficient algorithm that takes input a 3CNF ϕ and
outputs a (G, k) tuple s.t

x ∈ 3SAT f(x) ∈ INDSET

ϕ ∈ 3SAT (G, k) ∈ INDSET

Example 1: Independent Set

y Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Example 1: Independent Set

y Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

For every clause Ci form a complete
graph (cluster) on 7 vertices

A vertex stands for a partial
assignment of the variables in
Ci that satisfies the clause

Example 1: Independent Set

y Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Ci

C1 Cm

Add an edge between two
vertices in two different clusters if
the partial assignments they stand
for are incompatible.

Example 1: Independent Set

y Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Ci

C1 Cm

Graph G on 7m vertices

Example 1: Independent Set

y Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

y Obs: ϕ is satisfiable iff G has an ind. set of size m.

Ci

C1 Cm

Example 2: Clique

y CLIQUE := {(H, k): H has a clique of size k}

y Goal: Design a poly-time reduction f s.t.

y Reduction from INDSET: The reduction algorithm

computes G from G

x ∈ INDSET f(x) ∈ CLIQUE

(G, k) ∈ INDSET (G, k) ∈ CLIQUE

Example 3: Vertex Cover

y VCover := {(H, k): H has a vertex cover of size k}

y Goal: Design a poly-time reduction f s.t.

y Reduction from INDSET: Let n be the number of

vertices in G. The reduction algorithm maps (G, k) to
(G, n-k).

x ∈ INDSET f(x) ∈ VCover

(G, k) ∈ INDSET (G, n-k) ∈ VCover

Example 4: 0/1 Integer Programming

y 0/1 IProg := Set of satisfiable 0/1 integer programs
y A 0/1 integer program is a set of linear inequalities

with rational coefficients and the variables are
allowed to take only 0/1 values.

y Reduction from 3SAT: A clause is mapped to a linear

inequality as follows

x1 ∨ x2 ∨ x3 x1 + (1- x2) + x3 ≥ 1

Example 5: Max Cut

y MaxCut : Given a graph find a cut with the max size.
y A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V. Size of a

cut (U, V\U) is the number of edges from U to V\U.

y MinVCover: Given a graph H, find a vertex cover in
H that has the min size.

y Obs: From MinVCover(H), we can readily check if (H,
k) ∈ VCover, for any k.

Example 5: Max Cut

y MaxCut : Given a graph find a cut with the max size.
y A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V. Size of a

cut (U, V\U) is the number of edges from U to V\U.

y Goal: A poly-time reduction from MinVCover to
MaxCut.

 Size of a MaxCut(G) = 2.|E(H)| - |MinVCover(H)|

 H G s.t.
f

Example 5: Max Cut

y The reduction:

y G is formed by adding a new vertex w and adding
degH(u) – 1 edges between every u ∈ V(H) and w.

 H G
f

u u

w

degH(u) – 1 edges
between u and w

H G

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Let SG(U) = no. of edges in G with exactly one end

vertex incident on a vertex in U.

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Let SG(U) = no. of edges going out of U in G.

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Let SG(U) = size of the cut (U, V\U + w).

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Let SH(U) = no. of edges in H with exactly one end

vertex incident on a vertex in U.

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = SH(U) + Σ (degH(u) – 1)

 = SH(U) + ΣdegH(u) – |U|

u∈U

u∈U

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = SH(U) + Σ (degH(u) – 1)

 = SH(U) + ΣdegH(u) – |U|

u∈U

u∈U

Obs: Twice the number of
edges in H with at least one
end vertex in U.

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = SH(U) + Σ (degH(u) – 1)

 = SH(U) + ΣdegH(u) – |U|

 = 2.|EH(U)| - |U|

u∈U

u∈U

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = 2.|EH(U)| - |U|

y Proposition: If (U, V\U + w) is a max cut in G then U

is a vertex cover in H.

… Eqn (1)

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = 2.|EH(U)| - |U|

y Proposition: If (U, V\U + w) is a max cut in G then U

is a vertex cover in H.

… Eqn (1)

 SG(U) = |MaxCut(G)| = 2.|E(H)| - |U|

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = 2.|EH(U)| - |U|

y Proposition: If (U, V\U + w) is a max cut in G then U

is a vertex cover in H.

… Eqn (1)

 SG(U) = |MaxCut(G)| = 2.|E(H)| - |U|

U must be a minVCover in H

Example 5: Max Cut

y Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
y Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U, V\U + w) is a cut in G.

y Then SG(U) = 2.|EH(U)| - |U|

y Proposition: If (U, V\U + w) is a max cut in G then U

is a vertex cover in H.

… Eqn (1)

Thus, the proof of the above claim follows from the proposition

Example 5: Max Cut

y Proof of the Proposition: Suppose U is not a vertex
cover

u

v
w

degH(u)-1 edges

U

V\U + w

Example 5: Max Cut

y Proof of the Proposition: Suppose U is not a vertex
cover

u

v
w

Gain: degH(u)-1 + 1 edges
Loss: At most degH(u)-1 edges, these are the edges going from U to u
Net gain: At least 1 edge. Hence the cut is not a max cut.

U

V\U + w

Search versus Decision

Search version of NP problems
y Recall: A language L ⊆ {0,1}* is in NP if
¾ There’s a poly-time verifier M such that
¾ x∈L iff there’s a poly-size certificate u s.t M(x, u) = 1

• Search version of L: Given an input x ∈ {0,1}*, find a u
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

Search version of NP problems
y Recall: A language L ⊆ {0,1}* is in NP if
¾ There’s a poly-time verifier M such that
¾ x∈L iff there’s a poly-size certificate u s.t M(x ,u) = 1

• Search version of L: Given an input x ∈ {0,1}*, find a u
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.

Decision versus Search
y Is the search version of an NP-problem more difficult

than the corresponding decision version?

Decision versus Search
y Is the search version of an NP-problem more difficult

than the corresponding decision version?

y Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

Decision versus Search
y Is the search version of an NP-problem more difficult

than the corresponding decision version?

y Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

y Proof. (search decision) Obvious.

Decision versus Search
y Is the search version of an NP-problem more difficult

than the corresponding decision version?

y Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

y Proof. (decision search) We’ll prove this for
 L = SAT first.

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn)

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn)

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn)

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn)

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn)

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn)

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible
y Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

y We can find a satisfying assignment of ϕ with at most 2n
calls to A.

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

SAT ≤p L L ≤p SAT

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

From Cook-Levin theorem, we can
find a certificate of x∈L from a
satisfying assignment of ϕx.

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is any a poly-time decider for SAT

Decision ≡ Search for NPC problems

y Proof. (decision search) Let L be NP-complete, and
B be a poly-time algorithm to decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx
ϕ f(ϕ)

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is any a poly-time decider for SAT

Take A(ϕ) = B(f(ϕ)).

Decision versus Search
y Is search equivalent to decision for every NP problem?

Decision versus Search
y Is search equivalent to decision for every NP problem?

Probably not!

Decision versus Search
y Is search equivalent to decision for every NP problem?

y Let EE = ∪ DTIME (2c.2) and

 NEE = ∪ NTIME (2c.2)

y Class NTIME(T(n)) will be defined formally in the next
lecture.

c ≥ 0

n

c ≥ 0

n

Doubly exponential
analogues of P and NP

Decision versus Search
y Is search equivalent to decision for every NP problem?

y Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then

there’s a language in NP for which search does not
reduce to decision.

Decision versus Search
y Is search equivalent to decision for every NP problem?

y Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then

there’s a language in NP for which search does not
reduce to decision.

y Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions

Two types of poly-time reductions

y Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

y Definition. A language L1 ⊆ {0,1}* is polynomial-time

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Two types of poly-time reductions

y Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

y Definition. A language L1 ⊆ {0,1}* is polynomial-time

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Will be called an Oracle later

Two types of poly-time reductions

y Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

y Definition. A language L1 ⊆ {0,1}* is polynomial-time

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Karp reduction implies Cook reduction

Two types of poly-time reductions

y Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

y Definition. A language L1 ⊆ {0,1}* is polynomial-time

(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Homework: Read about Levin reduction

