Computational Complexity Theory

Lecture 3: NP-complete problems,
Search versus Decision

Department of Computer Science,
Indian Institute of Science

Recap: Cook-Levin Theorem

o A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ = (X VX)) A(X3V 7%y)

° Let SAT be the language consisting of all
satisfiable CNF formulae.

o (Cook 1971, Levin 1973) SAT is NP-complete.

Recap: Cook-Levin Theorem

e Let L € NP We intend to come up with a polynomial-
time computable function f: x s ¢, s.t,

x EL 4= ¢ € SAT

e Language L has a poly-time verifier M such that
xEL <= Ju €{0,1}PIX) s.t. M(x,u) = |

Recap: Cook-Levin Theorem

Output of W
T(N) | Guccepe olp| |
A A D N R
2 Qsare | U | O
A Ao A A
| stare | U; | | a cell
[|

Input u-variables of W

Observe: Y(u) = | iff N(u) = |

Recap: Cook-Levin Theorem

Output of Y,

T(n) |

o/p

qaccept

a Ao " A A

2 Qsare | U | O
a A A A
| Qsare | U1 | | coee a cell

[|

Input u-variables of Observe: Y, (u) = | iff M(x,u) = |

Recap: Cook-Levin Theorem

e Let L € NP We intend to come up with a polynomial
time computable function f: x s ¢, s.t,

x EL 4= ¢ € SAT

e Language L has a poly-time verifier M such that
xEL <= Ju €{0,1}PIX) sty (u) = I

/

W, is a poly(|x|)-time computable

Recap: Cook-Levin Theorem

e Let L € NP We intend to come up with a polynomial
time computable function f: x s ¢, s.t,

x EL 4= ¢ € SAT

e Language L has a poly-time verifier M such that
xEL e, (u) is satisfiable

 Important note: A satisfying assignment u for W,
trivially gives a certificate u such that M(x, u) = |.

Recap: Cook-Levin Theorem

e Let L € NP We intend to come up with a polynomial
time computable function f: x s ¢, s.t,

x EL 4= ¢ € SAT

e Language L has a poly-time verifier M such that
xEL e, (u) is satisfiable

o

A circuitbut nota CNF!

Recap: Cook-Levin Theorem

e From circuit to CNFE From circuit construct a CNF
¢ by introducing some extra variables v such that

W(u) = | iff §(u,v) is satisfiable.

e Y and ¢ are not equivalent formulas!

Recap: Cook-Levin Theorem

e From circuit to CNFE From circuit construct a CNF
¢ by introducing some extra variables v such that

W(u) = | iff §(u,v) is satisfiable.

e Language L has a poly-time verifier M such that
xeL @ 3u €{0,1}P(x) s.t. d, (u,v) is satisfiable

Recap: Cook-Levin Theorem

o From circuit @ construct a CNF
¢ by introducing some extra variables v such that

W(u) = | iff §(u,v) is satisfiable.

e Language L has a poly-time verifier M such that
xeL = ¢, (u,v) € SAT

* Important note: A satisfying assignment (u, v) for ¢,
trivially gives a certificate u such that M(x, u) = |.

Recap: 3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2CNF ¢ = (x; V x;) A (X3V 71x,)

o Definition. k-SAT is the language consisting of all
satisfiable kCNFs.

e Theorem. 3-SAT is NP-complete.

Proof sketch: (x; V x, V x3V =1x,) is satisfiable iff (x,
V X, Vz) A(X3V x4V 7Z) is satisfiable.

More NP-complete problems

NP complete problems: Examples

—

* Independent Set
e Clique

* Vertex cover —
e 0/l integer programming
e Max-Cut

e 3-coloring planar graphs
e 2-Diophantine solvability

Ref:

NPC problems from number theory

e SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x < c such that

x? = a (mod b).

e Theorem: SqRootMod is NP-complete.

NPC problems from number theory

e Variant IntFact : Given natural numbers L, U and N,

check if there exists a natural number d € [L, U]
such that d divides N.

e Claim: Variant_IntFact is NP-hard under randomized
boly-time reduction.

e Reference:
https://cstheory.stackexchange.com/questions/4 76 9/an-
np-complete-variant-of-factoring/4 785

A peculiar NP problem

. Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size < s that computes f.

* Easy to see that MCSP is in NP.

e s MCSP NP-complete! Not known!

Example |: Independent Set

o INDSET :={(G, k): G has independent set of size k}

* Goal: Design a poly-time reduction f s.t.

x € 3SAT = f(x) € INDSET

e Reduction from 35AT: Recall, a reduction is just an
efficient algorithm that takes input a 3CNF ¢ and
outputs a (G, k) tuple s.t

d € 3SAT = (G, k) € INDSET

Example |: Independent Set

o Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Example |: Independent Set

° Let § be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

A vertex stands for a partial
assighment of the variables in
C, that satisfies the clause

For every clause C, form a complete
graph (cluster) on 7 vertices

Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

G
Add an edge between two
vertices in two different clusters if

C, the partial assignments they stand Cn
for are incompatible.

Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Graph G on 7m vertices

Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

o Obs: ¢ is satisfiable iff G has an ind. set of size m.

Example 2: Clique

o CLIQUE := {(H, k): H has a clique of size k}

e Goal: Design a poly-time reduction f s.t.

x € INDSET 4= f(x) € CLIQUE

e Reduction from INDSET: The reduction algorithm
computes G from G

(G, k) € INDSET &= (G, k) € CLIQUE

Example 3: Vertex Cover

e VCover := {(H, k): H has a vertex cover of size k}

o Goal: Design a poly-time reduction f s.t.

x € INDSET &= f(x) € VCover

e Reduction from INDSET: Let n be the number of

vertices in G. The reduction algorithm maps (G, k) to
(G, n-k).

(G, k) € INDSET &= (G, n-k) € VCover

Example 4: 0/] Integer Programming

e 0/l IProg := Set of satisfiable 0/] integer programs

A O/l integer program is a set of linear inequalities
with rational coefficients and the variables are
allowed to take only 0/1 values.

o A clause is mapped to a linear
inequality as follows

X|V)?2v X3 I‘ X|+(I_X2)+X32 I

Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

e Acut of G=(V,E)is atuple (UV\U),U CV. Size of a
cut (U,V\U) is the number of edges from U to V\U.

 MinVCover: Given a graph H,find a vertex cover in
H that has the min size.

o Obs: From MinVCover(H), we can readily check if (H,
k) € VCover, for any k.

Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

e Acut of G=(V,E)is atuple (UV\U),U CV. Size of a
cut (U,V\U) is the number of edges from U to V\U.

o Goal: A poly-time reduction from MinVCover to

MaxCut. f
H e G st

Size of a MaxCut(G) = 2.|E(H)| - [MinVCover(H)|

Example 5: Max Cut

f
e The reduction: H e G

degy(u) — | edges
between u and w

H G

e G is formed by adding a new vertex w and adding
degy(u) — | edges between every u € V(H) and w.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

* Let S;(U) = no. of edges in G with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

* Let S;(U) = no. of edges going out of U in G.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

e Let S;(U) = size of the cut (U,V\U + w).

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

* Let S,(U) = no. of edges in H with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

e Then Sc(U) = S, (U) + = (deg,(u) — 1)

uey

= S4(U) *+ Zdegy(u) - U]

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

e Then Sc(U) = S, (U) + = (deg,(u) — 1)

uey

=(Su(U) + degy(u) } U]

Obs: Twice the number of
edges in H with at least one
end vertex in U.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,VI\U + w) is a cut in G.

e Then Sc(U) = S, (U) + = (deg,(u) — 1)

= S4(U) *+ Zdegy(u) - U]

= 2.[Ey(U)] - U

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|S¢(U) = 2.|E4(U)[- [U] | .- Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2.|E4(U)] - |U]

... Egn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U

is a vertex cover in H.

= S_(U) = |MaxCut(G)| = 2.|E(H)| - |U|

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|S¢(U) = 2|E4(U)[- [U] | .. Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U

IS a vertex cover in H U must be a minVCoverin H

N
= S_(U) = |MaxCut(G)| = 2.|[E(H)| - |U|

Example 5: Max Cut

e Claim: |MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)]
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sg(U) = 2.[E4(U)| - U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

Thus, the proof of the above claim follows from the proposition

Example 5: Max Cut

e Proof of the Proposition: Suppose U is not a vertex

cover AT ! ed
VAU + w 7 N egy(u)-1 edges

\
. w

U

."

Example 5: Max Cut

e Proof of the Proposition: Suppose U is not a vertex

cover
V\U + w

Gain: degy(u)-1 + | edges
Loss: At most deg,(u)-| edges,these are the edges going from U to u
Net gain: At least | edge.Hence the cutis not a max cut.

Search versus Decision

Search version of NP problems

e Recall: A language L < {0,[}* is in NP if
» There’s a poly-time verifier M such that
» x€EL iff there’s a poly-size certificate u s.t M(x, u) = |

- Search version of L: Given an input x € {0,1}’, find a u
€{0, [}P(x)) such that M(x, u) = 1, if such a u exists.

Search version of NP problems

e Recall: A language L < {0,[}* is in NP if
» There’s a poly-time verifier M such that
» x€EL iff there’s a poly-size certificate u s.t M(x ,u) = |

- Search version of L: Given an input x € {0,1}’, find a u
€{0, [}P(x)) such that M(x, u) = 1, if such a u exists.

- Example: Given a 3CNF @, find a satisfying assignment
for ¢ if such an assighment exists.

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version?

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version?

o Let L € {0,1}* be NP-complete. Then, the

search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version?

o Let L € {0,1}* be NP-complete. Then, the

search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

* Proof. (search == decision) Obvious.

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version?

o Let L € {0,1}* be NP-complete. Then, the

search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

* Proof. (decision == search) We’ll prove this for
L = SAT first.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,X,) is satisfiable.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

d(X,...,X,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

d(X,...,X,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

d(X,...,X,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

d(X,...,X,) Y

/

N ¢(0,...,x.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

d(X,...,X,) Y

/T

N O0,..x,) o(1,...x)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

d(X,...,X,) Y

/T

N 9(0,....x,) o(l,...,x,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

R Y
N 9(0,....x,) o(l,...,x,) Y

/

o(1,0,...,.x)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,.)

/

¢(1,0,0,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,.)

/

ACH(1,00.))=N ¢(1,0,0,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,)

D

AC9(1.00.)) =N ¢(1,0,0,...,x,) o(1,0,1,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,)

D

AC9(1.00.)) =N ¢(1,0,0,...,x,) O(1,0,1,....x) A(§(1,00.)) =Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,)

D

AC9(1.00.)) =N ¢(1,0,0,...,x,) O(1,0,1,....x) A(§(1,00.)) =Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

B(xiy) AD) =Y

/T

AC00.)) =N §(0,...,x,) O(1,...,x) A(O(1,.))=Y

/

A((1,0,.)) =Y ¢(1,0,...,x,)

T,

AC9(1.00.)) =N ¢(1,0,0,...,x,) O(1,0,1,....x) A(§(1,00.)) =Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,X,) is satisfiable.

* We can find a satisfying assignment of ¢ with at most 2n
calls to A.

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

SAT <, L L <, SAT

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

SAT <, L L <, SAT

X —> O,

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

SAT < L L <, SAT
X —s O,

From Cook-Levin theorem,we can
find a certificate of x€L from a
satisfying assighment of ¢,.

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

SAT <, L L <, SAT

X —> O,

How to find a satisfying assignment for ¢, using algorithm B ?

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

SAT <, L L <, SAT

X —> O,

How to find a satisfying assignment for ¢, using algorithm B ?

...we know how using A, which is any a poly-time decider for SAT

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, and
B be a poly-time algorithm to decide if xEL.

SAT <, L L <, SAT

b s f(0) Y

How to find a satisfying assignment for ¢, using algorithm B ?

...we know how using A, which is any a poly-time decider for SAT

Take A(0) = B(f(d)).

Decision versus Search

* |s search equivalent to decision for every NP problem?

Decision versus Search

* |s search equivalent to decision for every NP problem?

Probably not!

Decision versus Search

* |s search equivalent to decision for every NP problem?

o Let EE = U DTIME (2<2) _ and

c20
Doubly exponential

| f P and NP
NEE = U NTIME (2<2) analogues of P an

c=20

e Class NTIME(T(n)) will be defined formally in the next
lecture.

Decision versus Search

* |s search equivalent to decision for every NP problem?

o If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

Decision versus Search

* |s search equivalent to decision for every NP problem?

e Theorem. If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

e Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g,
Computing Nash Equilibrium (see class PPAD).

Read about total NP functions

Two types of poly-time reductions

o A language L, € {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

XEL| © f(X)ELz

g A language L, € {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0, I}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Two types of poly-time reductions

o A language L, € {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

XEL| © f(X)ELz

o A language L, € {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0, I}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subryjine” for deciding L, .

Will be called an Oracle later

Two types of poly-time reductions

o A language L, € {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

XEL| © f(X)ELz

o A language L, € {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0, I}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Karp reduction implies Cook reduction

Two types of poly-time reductions

o A language L, € {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

XEL| © f(X)ELz

o A language L, € {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0, I}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Read about Levin reduction

