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Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

o |t is formally defined by a tuple (I, Q, 0y, 0)). It has a
special state q, . in addition to q,. and gy,

* At every step of computation, the machine applies
one of two functions Oyand O, arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).




Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and O, (beginning from the
start configuration) that makes M reach q, ...

o . An NTM M decides a language L {0, | }** if
» M accepts x == xEL

» On every sequence of applications of the transition
functions on input x, M either reaches q, ... or gy,
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rememberin this course we’ll always be dealing with TMs
that halt on everyinput.



Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and O, (beginning from the
start configuration) that makes M reach q, ...

o . An NTM M decides L in T(|x]|) time if
» M accepts x == xEL
» On every sequence of applications of the transition

functions on input x, M either reaches q, ..., OF Quy
within T(|x|) steps of computation.




Class NTIME

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.
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a poly-time verifier M s.t,
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€{0,1}*(X) by applying 8,and &, nondeterministically



Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = U NTIME (n°).

c>0

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

xeEL e 3u €{0,1}PxD s.t. M(x,u) = |

....and then simulates M on (x, u) to verify M(x,u) = |.



Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = U NTIME (n°).

c>0

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n°) time. (|x| = n)



Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.
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Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = U NTIME (n°).

c>0

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n¢) time. (|x| =n)
Think of a verifier M that takes x and u €{0,1}*( as
input, and simulates M’ on x with u as the sequence of
choices for applying 0,and O, .
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A language L is in co-NP if Lis in NP
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in P is in both NP and co-NF.
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Class co-NP

o For every L € {0,1}* let L = {0,1}*\ L.
A language L is in co-NP if Lis in NP

o SAT = {¢ : ¢ is not satisfiable}.

» Note: SAT is Cook reducible to SAT. But, there’s a
fundamental difference between the two problems that
is captured by the fact that SAT is not known to be
Karp reducible to SAT. In other words, there’s no known
poly-time verification process for SAT.
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* Recall, a language L < {0,1}* is in NP if there’s a poly-time
verifier M such that

xeEL e 3Ju €{0,1}PDst. M(x,u) = I
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opposite of M
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Class co-NP : Alternate definition

* Recall, a language L < {0,1}* is in NP if there’s a poly-time
verifier M such that

xeEL e 3Ju €{0,1}PDst. M(x,u) = I
xeEL e vy €{0,1}rP0x) st M(x,u) = 0
x€EL e=»Vu €{0,1}P(x) st. M(x,u) = |

o Definition. A language L € {0,1}* is in co-NP if there’s a
poly-time TM M such that

xeL ®»vu €{0,1}PIX) st. M(x,u) = |

for NP this was 3



co-NP-completeness

o Definition. A language L' € {0,1}* is co-NP-complete if
» L is in co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

+ Theorem. SAT is co-NP-complete.



co-NP-completeness

o Definition. A language L' € {0,1}* is co-NP-complete if
» L is in co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

+ Theorem. SAT is co-NP-complete.
Proof. Let L € co-NP. Then
L € NP



co-NP-completeness

o Definition. A language L' € {0,1}* is co-NP-complete if
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co-NP-completeness

o Definition. A language L' € {0,1}* is co-NP-complete if
» L is in co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.
+ Theorem. SAT is co-NP-complete.
Proof. Let € co-NP. Then
€ NP
<, SAT
L <, SAT

4
4




co-NP-completeness

o Definition. A language L' € {0,1}* is co-NP-complete if
» L is in co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

+ Theorem. Let
TAUTOLOGY = {¢ : every assignment satisfies ¢ }.
TAUTOLOGY is co-NP complete.

Proof. Similar



co-NP-completeness

° A language L' < {0,1}* is co-NP-complete if
» L is in co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

If L in NP-complete then Lis co-NP-complete

Proof. Similar



The diagram again

If a co-NP complete language
belongs to NP then

co-NP € NP
=) co-NP = NP

l

Let C, and C, be two
complexity classes.

If C, € C,,then
CO'C| c CO'C2.

Obs. co-(co-C) = C.




The diagram again

If a co-NP complete language
belongs to NP then

co-NP € NP
=) co-NP = NP

l

Let C, and C, be two
complexity classes.

If C, € C,,then
CO'C| c CO'C2.

Obs. co-(co-C) = C.




Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Claim. FACT € NP N co-NP

* So, FACT is NP-complete implies NP = co-NP.



Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Claim. FACT € NP N co-NP

* Proof. FACT € NP : Give p as a certificate. The
verifier checks if p is prime (AKS test), | < p = U and
p divides N.
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e Proof. FACT € NP : Give complete prime
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the correctness of the factorization, and then checks if
none of the prime factors is in [U].



Integer factoring in NP (1 co-NP

FACT = {(N, U): there’s a prime in [U] dividing N}

o FACT € NP N co-NP

e Proof. FACT € NP : Give complete prime
factorization of N as a certificate. The verifier checks

the correctness of the factorization, and then checks if
none of the prime factors is in [U].

e Homeworl: If FACT € B then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.



Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(Vn log n)) time.
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Class EXP

e Definition.  Class EXP is the exponential time
analogue of class F.

EXP = UDTIME (2")

c= |

e Observation. P € NP € EXP

e Exponential Time Hypothesis.
Any algorithm for 3-SAT takes = 2°" time, where &> 0
is some fixed constant and n is the no. of variables.

\

In other words, O cannot be made arbitrarily close to 0.




Class EXP

e Definition.  Class EXP is the exponential time
analogue of class F.

EXP = UDTIME (2")

c= |

e Observation. P € NP € EXP

e Exponential Time Hypothesis.
Any algorithm for 3-SAT takes = 2°" time, where &> 0
is some fixed constant and n is the no. of variables.

ETH = P#NP
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* Diagondlization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.
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If M, takes T time on x then U takes
O(T logT) time to simulate M, on x.



Diagonalization

* Diagondlization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.




Time Hierarchy Theorem

- An application of Diagonalization
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* Let f(n) and g(n) be time-constructible functions s.t.,
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* Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
Show that there’s a language L decided by a
TM D with time complexity O(n?) s.t.,,any TM

M with runtime O(n) cannot decide L.
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|. On input x, compute |x|?.
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Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
T™D: D’s time steps not M. ’s
|. On input x, compute |x|?. /tyime Steps.

2. Simulate M, on x for |x|? steps.
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* Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
T™ D :
|. On input x, compute |x|?.
2. Simulate M, on x for [x|? steps.
a. If M, stops and outputs b then output |-b



Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
T™ D :
|. On input x, compute |x|?.
2. Simulate M, on x for [x|? steps.
a. If M, stops and outputs b then output |-b.
b. Otherwise, output |.



Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.

D runs in O(n?) time as n? is time-constructible.




Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
Claim. There’s no TM M with running time O(n) that
decides L (the language accepted by D).
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f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
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» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

C is a constant
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» Think of a sufficiently large x such that M = M, .
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» Think of a sufficiently large x such that M = M, .
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Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M,(x) = b.
» D on input x, simulates M, on x for |x|? steps.
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f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = n and g(n) = n2
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M,(x) = b.

» D on input x, simulates M, on x for |x|? steps. Since M, stops
within c.|x| steps, D’s simulation also stops within c’.c. [x|. log

x| steps.
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f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = n and g(n) = n2
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
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» Suppose M(x) = M,(x) = b.

» D on input x, simulates M, on x for |x|? steps. Since M, stops
within c.|x| steps, D’s simulation also stops within c’.c. [x|. log
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* Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = n and g(n) = n2
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M,(x) = b.

» D on input x, simulates M, on x for |x|? steps. Since M, stops
within c.|x| steps, D’s simulation also stops within c’.c. [x|. log

x| steps. (as c’.c.|x|.log |x| < |x|? for sufficiently large x)




Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = nand g(n) = n?.
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M,(x) = b.
» D on input x, simulates M, on x for |x|? steps. Since M, stops

within c.|x| steps, D’s simulation also stops within c’.c. [x|. log
x| steps. And D outputs the opposite of what M, outputs!




Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = n and g(n) = n2
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M, (x) = b.
» Hence, D(x) = |-b.




Time Hierarchy Theorem

* Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We'll prove with f(n) = n and g(n) = n2
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M, (x) = b.
» Hence, D(x) = |-b.

Contradiction! ™M does not decide L.



Time Hierarchy Theorem

e Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem. DTIME(f(n)) & DTIME(g(n))

e Theorem. P &€ EXP

Proof. Similar (homework)
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o ETH implies
kSUM requires n®®) time.



