
Computational Complexity Theory

Lecture 4: NTM, Class co-NP and EXP;

 Diagonalization

Department of Computer Science,
Indian Institute of Science

NTM: An alternate characterization of NP

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

also called nondeterministically

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

this is different from randomly

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

remember in this course we’ll always be dealing with TMs
that halt on every input.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides L in T(|x|) time if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.

Class NTIME

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

…. and then simulates M on (x, u) to verify M(x,u) = 1.

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input,

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input, and simulates M’ on x with u as the sequence of
choices for applying δ0 and δ1 .

c > 0

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 Note: co-NP is not complement of NP. Every language
in P is in both NP and co-NP.

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 NP co-NP

P

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 Note: SAT is Cook reducible to SAT. But, there’s a
fundamental difference between the two problems that
is captured by the fact that SAT is not known to be
Karp reducible to SAT. In other words, there’s no known
poly-time verification process for SAT.

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M outputs the
opposite of M

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M is a poly-time TM

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

is in co-NP

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Definition. A language L ⊆ {0,1}* is in co-NP if there’s a
poly-time TM M such that

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

for NP this was ∃

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

 L ≤p SAT

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

 L ≤p SAT

 L ≤p SAT

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. Let

 TAUTOLOGY = {ϕ : every assignment satisfies ϕ }.

 TAUTOLOGY is co-NP complete.

 Proof. Similar (homework)

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. If L in NP-complete then L is co-NP-complete

 Proof. Similar (homework)

The diagram again

NP co-NP

P

NPC co-NPC

If a co-NP complete language
belongs to NP then

 co-NP ⊆ NP
 co-NP = NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

The diagram again

NP co-NP

P

NPC co-NPC

If a co-NP complete language
belongs to NP then

 co-NP ⊆ NP
 co-NP = NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

??

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 So, FACT is NP-complete implies NP = co-NP.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give p as a certificate. The
verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and
p divides N.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

 Homework: If FACT ∈ P, then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(√n log n)) time.

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)
c

c ≥ 1

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

c

c ≥ 1

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

c

c ≥ 1

NP co-NP

P

EXP

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

In other words, δ cannot be made arbitrarily close to 0.

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

ETH P ≠ NP

Diagonalization

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

If Mα takes T time on x then U takes
O(T log T) time to simulate Mα on x.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Time Hierarchy Theorem

- An application of Diagonalization

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

e.g. f(n) = n, g(n) = n2

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 Task: Show that there’s a language L decided by a

 TM D with time complexity O(n2) s.t., any TM

 M with runtime O(n) cannot decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

D’s time steps not Mx’s
time steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

 b. Otherwise, output 1.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 D runs in O(n2) time as n2 is time-constructible.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 Claim. There’s no TM M with running time O(n) that

 decides L (the language accepted by D).

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

c is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps.

c’ is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps. (as c’.c. |x|. log |x| < |x|2 for sufficiently large x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps. And D outputs the opposite of what Mx outputs!

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 Hence, D(x) = 1-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 Hence, D(x) = 1-b.

 Contradiction! M does not decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 Proof. Similar (homework)

Time Hierarchy Theorem

 Are there natural problems that take Ω(n2) time?

Time Hierarchy Theorem

 Are there natural problems that take Ω(n2) time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

Time Hierarchy Theorem

 Are there natural problems that take Ω(n2) time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some ε> 0.

Time Hierarchy Theorem

 Are there natural problems that take Ω(n2) time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some ε> 0.

 kSUM: Given a list of n numbers, check if there exists
k numbers in the list that sum to zero.

Time Hierarchy Theorem

 Are there natural problems that take Ω(n2) time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some ε> 0.

 kSUM: Given a list of n numbers, check if there exists
k numbers in the list that sum to zero.

 Theorem (Patrascu & Williams 2010). ETH implies
kSUM requires nΩ(k) time.

