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Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 
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one of two functions δ0 and δ1 arbitrarily. 

 

also called nondeterministically 



Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 

this is different from randomly 



Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 Unlike DTMs,  NTMs are not intended to be 
physically realizable (because of the arbitrary 
nature of application of the transition functions). 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 
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 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 

remember in this course we’ll always be dealing with TMs 
that halt on every input. 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides L in T(|x|) time if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt 
within T(|x|) steps of computation. 



Class NTIME 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  



Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically 
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Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

…. and then simulates M on (x, u) to verify M(x,u) = 1. 

c > 0 
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Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be in NTIME (nc).  Then, there’s an 
NTM M’ that decides L in p(n) = O(nc) time.    (|x| = n)  

Think of a verifier M that takes x and u ∈{0,1}p(n) as 
input, and simulates M’ on x with u as the sequence of 
choices for applying δ0 and δ1 . 

c > 0 



Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 
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   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 

 

 Note: co-NP is not complement of NP. Every language 
in P is in both NP and co-NP. 
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Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 

 

 Note:  SAT is Cook reducible to SAT. But, there’s a 
fundamental difference between the two problems that 
is captured by the fact that SAT is not known to be 
Karp reducible to SAT. In other words, there’s no known 
poly-time verification process for SAT.   

 

 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 

 

 

 

M outputs the 
opposite of M 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 

 

 

 

M is a poly-time TM 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 Definition.  A language L ⊆ {0,1}* is in co-NP if there’s a 
poly-time TM M such that 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 
for NP this was ∃ 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  SAT is co-NP-complete. 
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 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  SAT is co-NP-complete. 

   Proof.  Let   L  ∈ co-NP.   Then 

                     L  ∈ NP 

                     L  ≤p SAT 

                     L  ≤p SAT 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  Let  

         TAUTOLOGY = {ϕ :  every assignment satisfies ϕ }. 

   TAUTOLOGY is co-NP complete.  

   Proof.   Similar (homework) 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem. If L in NP-complete then L is co-NP-complete  

   Proof.   Similar (homework) 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If a co-NP complete language 
belongs to NP then 
 
        co-NP  ⊆ NP  
        co-NP   = NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If a co-NP complete language 
belongs to NP then 
 
        co-NP  ⊆ NP  
        co-NP   = NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 

?? 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 

 So, FACT is NP-complete implies NP = co-NP. 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP :  Give p as a certificate. The 
verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and 
p divides N.   



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP : Give complete prime 
factorization of N as a certificate. The verifier checks 
the correctness of the factorization, and then checks if 
none of the prime factors is in [U].   



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP : Give complete prime 
factorization of N as a certificate. The verifier checks 
the correctness of the factorization, and then checks if 
none of the prime factors is in [U].   
 

 Homework: If FACT ∈ P, then there’s a algorithm to find the 
prime factorization a given n-bit integers in poly(n) time. 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Factoring algorithm. Dixon’s randomized algorithm 
factors an n-bit number in exp(O(√n log n)) time. 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  
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Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

c 

c ≥ 1 
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Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

In other words, δ cannot be made arbitrarily close to 0. 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

ETH          P ≠ NP 
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small overhead. 



Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

If Mα takes T time on x then U takes 
O(T log T) time to simulate Mα on x.  



Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

 

2. Every string represents some TM,  and every 
TM can be represented by infinitely many 
strings. 



Time Hierarchy Theorem 

- An application of Diagonalization 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

e.g.  f(n) = n,  g(n) = n2 
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Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

      Task:  Show that there’s a language L decided by a  

              TM D with time complexity O(n2) s.t., any TM  

              M with runtime O(n) cannot decide L.  
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D’s time steps not Mx’s 
time steps. 
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                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  
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Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

      TM D : 

          1.  On input x, compute |x|2. 

          2.  Simulate Mx on x for |x|2 steps. 

                a.  If Mx stops and outputs b then output 1-b.  

                b.  Otherwise, output 1. 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

         D runs in O(n2) time as n2 is time-constructible. 
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

     Claim.  There’s no TM M with running time O(n) that 

                decides L (the language accepted by D). 
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 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  
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 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  

 Think of a sufficiently large x such that M = Mx . 
 Suppose M(x) = Mx(x) = b. 

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops 
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log 
|x| steps.   And D outputs the opposite of what Mx outputs!  
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  

 Think of a sufficiently large x such that M = Mx . 
 Suppose M(x) = Mx(x) = b. 

 Hence, D(x) = 1-b. 

 

          Contradiction!   M does not decide L. 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

   Proof.  Similar  (homework)  
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Time Hierarchy Theorem  

 Are there natural problems that take Ω(n2) time?  

 

 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some ε> 0.    

 kSUM:  Given a list of n numbers, check if there exists 
k numbers in the list that sum to zero.  

 Theorem (Patrascu & Williams 2010). ETH implies 
kSUM requires nΩ(k) time. 

 


