Computational Complexity Theory

Lecture 4: NTM, Class co-NP and EXP; Diagonalization

Department of Computer Science, Indian Institute of Science

NTM: An alternate characterization of NP

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 *arbitrarily*.

also called *nondeterministically*

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 *arbitrarily*.

this is different from *randomly*

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 *arbitrarily*.
- Unlike DTMs, NTMs are **not intended to be physically realizable** (because of the arbitrary nature of application of the transition functions).

- Definition. An NTM M <u>accepts</u> a string $x \in \{0, I\}^*$ iff on input x there <u>exists</u> a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. An NTM M <u>decides</u> a language L ⊆ {0,1}* if
 M accepts x → x∈L

> On every sequence of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} .

- Definition. An NTM M accepts a string $x \in \{0, I\}^*$ iff on input x there **exists** a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. An NTM M decides a language L ⊆ {0,1}* if
 M accepts x → x∈L

> On every sequence of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} .

remember in this course we'll always be dealing with TMs that halt on every input.

- Definition. An NTM M accepts a string $x \in \{0, I\}^*$ iff on input x there **exists** a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. An NTM M decides L in T(|x|) time if
 - > M accepts x \iff x \in L

> On <u>every sequence</u> of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} within T(|x|) steps of computation.

Class NTIME

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)}$ s.t. M(x, u) = I

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

Think of an NTM M' that on input x, at first <u>guesses</u> a u $\in \{0, I\}^{p(|x|)}$ by applying δ_0 and δ_1 nondeterministically

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

.... and then simulates M on (x, u) to verify M(x, u) = 1.

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be in NTIME (n^c). Then, there's an NTM M' that decides L in $p(n) = O(n^c)$ time. (|x| = n)

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be in NTIME (n^c). Then, there's an NTM M' that decides L in $p(n) = O(n^c)$ time. (|x| = n) Think of a verifier M that takes x and $u \in \{0, I\}^{p(n)}$ as input,

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be in NTIME (n^c). Then, there's an NTM M' that decides L in p(n) = O(n^c) time. (|x| = n) Think of a verifier M that takes x and $u \in \{0, 1\}^{p(n)}$ as input, and simulates M' on x with u as the sequence of choices for applying δ_0 and δ_1 .

- Definition. For every $L \subseteq \{0, I\}^*$ let $\overline{L} = \{0, I\}^* \setminus L$. A language L is in co-NP if \overline{L} is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.

- Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.
 A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.
- Note: co-NP is <u>not</u> complement of NP. Every language in P is in both NP and co-NP.

- Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.
 A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.

- Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.
 A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.
- Note: SAT is Cook reducible to SAT. But, there's a fundamental difference between the two problems that is captured by the fact that SAT is <u>not</u> known to be Karp reducible to SAT. In other words, there's no known poly-time verification process for SAT.

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $x \in L \quad \Longleftrightarrow \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$ $x \in \overline{L} \quad \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0$ $x \in \overline{L} \quad \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I$ $\bigcap \\ \overline{M} \text{ outputs the opposite of } M$

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

M is a poly-time TM

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $x \in L \iff \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$ $x \in \overline{L} \iff \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0$ $x \in \overline{L} \iff \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I$

is in co-NP

- Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that
 - $\begin{array}{ll} x \in L & \Longleftrightarrow \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I \\ x \in \overline{L} & \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0 \\ x \in \overline{L} & \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I \end{array}$
- Definition. A language L ⊆ {0,1}* is in co-NP if there's a poly-time TM M such that

$$x \in L \quad \Longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$$

- Definition. A language $L' \subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete.

- Definition. A language $L' \subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete. Proof. Let $L \in co-NP$. Then $\overline{L} \in NP$

- Definition. A language $L' \subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete. Proof. Let $L \in co-NP$. Then $\overline{L} \in NP$ $\Longrightarrow \overline{L} \leq_p SAT$

- Definition. A language $L' \subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete. Proof. Let $L \in co-NP$. Then
 - ¯L ∈ NP

$$\implies \overline{L} \leq_{p} SAT \\ \implies L \leq_{D} \overline{SAT}$$

- Definition. A language $L' \subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. Let
 - TAUTOLOGY = { ϕ : every assignment satisfies ϕ }. TAUTOLOGY is co-NP complete.
 - Proof. Similar (homework)

- Definition. A language $L' \subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. If L in NP-complete then L is co-NP-complete
 Proof. Similar (homework)

The diagram again

The diagram again

Integer factoring in NP \cap co-NP

• Integer factoring.

 $FACT = \{(N, U): there's a prime in [U] dividing N\}$

- Claim. FACT \in NP \cap co-NP
- So, FACT is NP-complete implies NP = co-NP.

Integer factoring in NP \cap co-NP

• Integer factoring.

FACT = {(N, U): there's a prime in [U] dividing N}

- Claim. FACT \in NP \cap co-NP
- Proof. FACT ∈ NP : Give p as a certificate. The verifier checks if p is prime (AKS test), I ≤ p ≤ U and p divides N.
Integer factoring in NP \cap co-NP

• Integer factoring.

FACT = $\{(N, U): \text{there's a prime in } [U] \text{ dividing } N\}$

• Claim. FACT \in NP \cap co-NP

Proof. FACT ∈ NP : Give complete prime factorization of N as a certificate. The verifier checks the correctness of the factorization, and then checks if none of the prime factors is in [U].

Integer factoring in NP \cap co-NP

• Integer factoring.

FACT = $\{(N, U): \text{there's a prime in } [U] \text{ dividing } N\}$

• Claim. FACT \in NP \cap co-NP

Proof. FACT ∈ NP : Give complete prime factorization of N as a certificate. The verifier checks the correctness of the factorization, and then checks if none of the prime factors is in [U].

 Homework: If FACT ∈ P, then there's a algorithm to find the prime factorization a given n-bit integers in poly(n) time.

Integer factoring in NP \cap co-NP

• Integer factoring.

FACT = {(N, U): there's a prime in [U] dividing N}

• Factoring algorithm. Dixon's randomized algorithm factors an n-bit number in $\exp(O(\sqrt{n \log n}))$ time.

• Definition. Class EXP is the exponential time analogue of class P.

```
EXP = \bigcup_{c \ge 1} DTIME (2^n)
```

- Definition. Class EXP is the exponential time analogue of class P. EXP = $\bigcup DTIME(2^n)$
- Observation. $P \subseteq NP \subseteq EXP$

- Definition. Class EXP is the exponential time analogue of class P.
 EXP = U DTIME (2ⁿ)
- Observation. $P \subseteq NP \subseteq EXP$

- Definition. Class EXP is the exponential time analogue of class P.
 EXP = U DTIME (2ⁿ)
- Observation. $P \subseteq NP \subseteq EXP$
- Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta \cdot n}$ time, where $\delta \geq 0$ is <u>some fixed constant</u> and n is the no. of variables.

In other words, δ cannot be made arbitrarily close to 0.

- Definition. Class EXP is the exponential time analogue of class P. EXP = \bigcup DTIME (2ⁿ ^c)
- Observation. $P \subseteq NP \subseteq EXP$
- Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta.n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

ETH \implies P \neq NP

• Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.

If M_{α} takes T time on x then U takes O(T log T) time to simulate M_{α} on x.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.
 - 2. Every string represents some TM, and every TM can be represented by *infinitely many* strings.

- An application of Diagonalization

• Let f(n) and g(n) be <u>time-constructible</u> functions s.t., $f(n) . \log f(n) = o(g(n)).$ e.g. $f(n) = n, g(n) = n^2$

 Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n².

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². Task: Show that there's a language L decided by a TM D with time complexity O(n²) s.t., any TM M with runtime O(n) cannot decide L.

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :

I. On input x, compute $|x|^2$.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - I. On input x, compute $|x|^2$.
 - 2. Simulate M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D : D's time steps not M
 - I. On input x, compute $|x|^2$.

D's time steps not M_x 's time steps.

2. Simulate M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - I. On input x, compute $|x|^2$.
 - 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs **b** then output I-b

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - I. On input x, compute $|x|^2$.
 - 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs **b** then output I-b.
 - b. Otherwise, output 1.

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². D runs in O(n²) time as n² is <u>time-constructible</u>.

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². Claim. There's no TM M with running time O(n) that decides L (the language accepted by D).

Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.

Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.

<mark>c</mark> is a constant

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - > Think of a <u>sufficiently large</u> x such that $M = M_x$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - > Think of a <u>sufficiently large</u> x such that $M = M_x$.
 - > Suppose $M(x) = M_x(x) = b$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - > Think of a <u>sufficiently large</u> x such that $M = M_x$.
 - > Suppose $M(x) = M_x(x) = b$.
 - > D on input x, simulates M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.
- > Suppose $M(x) = M_x(x) = b$.
- D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.

> Suppose $M(x) = M_x(x) = b$.

D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps.

c' is a constant

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.

> Suppose $M(x) = M_x(x) = b$.

D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. (as c'.c. |x|. log |x| < |x|² for sufficiently large x)

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.
- > Suppose $M(x) = M_x(x) = b$.
- D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log
 |x| steps. And D outputs the opposite of what M_x outputs!

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.
- > Suppose $M(x) = M_x(x) = b$.
- \rightarrow Hence, D(x) = I-b.
- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.
- > Suppose $M(x) = M_x(x) = b$.
- \rightarrow Hence, D(x) = I-b.

Contradiction! M does not decide L.

Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
- Theorem. P ⊊ EXP
 Proof. Similar (homework)

• Are there natural problems that take $\Omega(n^2)$ time?

- Are there natural problems that take $\Omega(n^2)$ time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.

- Are there natural problems that take $\Omega(n^2)$ time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some $\epsilon > 0$.

- Are there natural problems that take $\Omega(n^2)$ time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists
 k numbers in the list that sum to zero.

- Are there natural problems that take $\Omega(n^2)$ time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists
 k numbers in the list that sum to zero.
- Theorem (Patrascu & Williams 2010). ETH implies kSUM requires $n^{\Omega(k)}$ time.