
Computational Complexity Theory

Lecture 5: Ladner’s theorem, Relativization

Department of Computer Science,
Indian Institute of Science

Recap: Class co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Edmonds (1966)

Recap: Class co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Check:
https://cstheory.stackexchange.com/questions/20
021/reasons-to-believe-p-ne-np-cap-conp-or-not

• Integer factoring (FACT) (??)
• Approximate shortest vector in a lattice (??)
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

Recap: Class co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

• Integer factoring (FACT) (??)
• Approximate shortest vector in a lattice (??)
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-Intermediate

Recap: Class co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

Ladner’s theorem: P ≠ NP implies
existence of a NP-intermediate
language.
 • Integer factoring (FACT) (??)

• Approximate shortest vector in a lattice (??)
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-Intermediate

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Recap: Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. (Hartmanis & Stearns 1965)

 DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 This type of results are called lower bounds.

Ladner’s Theorem

- Another application of Diagonalization

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

P

NPC

NP NP-intermediate

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. A delicate argument using diagonalization.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

 Let SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

m
H(m)

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

 Let SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

m
H(m)

H would be defined in such a way that SATH is NP-intermediate
 (assuming P ≠ NP)

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

for every m

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

∞

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

 Proof: Later (uses diagonalization).

∞

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

m
H(m)

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

m
H(m)

m
H(m)

length at most m + 1 + mC

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

 As P ≠ NP, it must be that SATH ∉ P .

m
H(m)

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

∞

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

|ϕ| = n |Ψ 0 1k| = nc

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

|ϕ| = n |Ψ 0 1k| = nc

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m). (Homework: Verify that
this can be done in poly(n) time.)

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Either m ≤ m0 (in which case the task reduces to
checking if a constant-size Ψ is satisfiable),

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

or H(m) > 2c (as H(m) tends to infinity with m).

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, w.l.o.g. |f(ϕ)| ≥ k ≥ m2c

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, w.l.o.g. nc = |f(ϕ)| ≥ k ≥ m2c

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Thus, checking if an n-size formula ϕ
is satisfiable reduces to checking if a
√n-size formula Ψ is satisfiable.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Do this recursively! Only O(log log n) recursive steps required.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

 Hence SATH is not NP-complete, as P ≠ NP.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Properties of H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

 SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

∞

m
H(m)

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

 Think of computing H(m) sequentially: Compute H(1),
H(2),…,H(m-1). Just before computing H(m), find
SATH ∩ {0,1}log m.

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

 Construction. H(m) is the smallest k < log log m s.t.

1. Mk decides membership of all length up to
log m strings x in SATH within k.|x|k time.

2. If no such k exists then H(m) = log log m.

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

 Homework. Prove that H(m) is computable from m
in O(m3) time.

Construction of H

 Claim. If SATH ∈ P then H(m) ≤ C (a constant).

 Proof. There is a poly-time M that decides
membership of every x in SATH within c.|x|c time.

Construction of H

 Claim. If SATH ∈ P then H(m) ≤ C (a constant).

 Proof. There is a poly-time M that decides
membership of every x in SATH within c.|x|c time.

 As M can be represented by infinitely many strings,
there’s anα ≥ c s.t. M = Mα decides membership of
every x in SATH within α.|x|α time.

 So, for every m satisfying α < log log m, H(m) ≤ α.

Construction of H

 Claim. If H(m) ≤ C (a constant) for infinitely many
m, then SATH ∈ P.

 Proof. There’s a k ≤ C s.t. H(m) = k for infinitely many
m.

Construction of H

 Claim. If H(m) ≤ C (a constant) for infinitely many
m, then SATH ∈ P.

 Proof. There’s a k ≤ C s.t. H(m) = k for infinitely many
m.

 Pick any x ∈ {0,1}*. Think of a large enough m s.t.
|x| ≤ log m and H(m) = k.

Construction of H

 Claim. If H(m) ≤ C (a constant) for infinitely many
m, then SATH ∈ P.

 Proof. There’s a k ≤ C s.t. H(m) = k for infinitely many
m.

 Pick any x ∈ {0,1}*. Think of a large enough m s.t.
|x| ≤ log m and H(m) = k.

 This means x is correctly decided by Mk in k.|x|k time.
So, Mk is a poly-time machine deciding SATH.

Natural NP-intermediate problems ??

 Integer factoring

 Approximate shortest vector in a lattice

 Minimum Circuit Size Problem

 (“Multi-output MCSP is NP-hard”, Ilango, Loff & Oliveira 2020)

 Graph isomorphism

Limits of diagonalization

 Like in the proof of P ≠ EXP, can we use
diagonalization to show P ≠ NP ?

Limits of diagonalization

 Like in the proof of P ≠ EXP, can we use
diagonalization to show P ≠ NP ?

 The answer is No, if one insists on using only the two
features of diagonalization.

 The proof of this fact uses diagonalization and the
notion of oracle Turing machines!

Oracle Turing Machines

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM
ML is a TM with a special query tape and three special
states qquery, qyes and qno such that whenever the
machine enters the qquery state, it immediately transits
to qyes or qno depending on whether the string in the
query tape belongs to L. (ML has oracle access to L)

Oracle Turing Machines

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM
ML is a TM with a special query tape and three special
states qquery, qyes and qno such that whenever the
machine enters the qquery state, it immediately transits
to qyes or qno depending on whether the string in the
query tape belongs to L. (ML has oracle access to L)

 Think of physical realization of ML as a device with
access to a subroutine that decides L. We don’t count
the time taken by the subroutine.

Oracle Turing Machines

 We can define a nondeterministic Oracle TM similarly.

 “Important note”: Oracle TMs
(deterministic/nondeterministic) have the same two
features used in diagonalization: For any fixed L ⊆
{0,1}*,

 1. There’s an efficient universal TM with oracle access to L,

 2. Every ML has infinitely many representations.

Complexity classes using oracles

 Definition: Let L ⊆ {0,1}* be a language. Complexity
classes PL, NPL and EXPL are defined just as P, NP and
EXP respectively, but with TMs replaced by oracle TMs
with oracle access to L in the definitions of P, NP and
EXP respectively. For e.g. SAT ∈ PSAT

Complexity classes using oracles

 Definition: Let L ⊆ {0,1}* be a language. Complexity
classes PL, NPL and EXPL are defined just as P, NP and
EXP respectively, but with TMs replaced by oracle TMs
with oracle access to L in the definitions of P, NP and
EXP respectively. For e.g. SAT ∈ PSAT

 Such complexity classes help us identify a class of
complexity theoretic proofs called relativizing proofs.

Relativization

Relativizing results

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed
language. Owing to the “Important note”, the proof of
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by
working with TMs with oracle access to L.

 We say that the P ≠ EXP result/proof relativizes.

Relativizing results

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed
language. Owing to the “Important note”, the proof of
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by
working with TMs with oracle access to L.

 We say that the P ≠ EXP result/proof relativizes.

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed
language. Owing to the ‘Important note’, any
proof/result that uses only the two features of
diagonalization relativizes.

Relativizing results

 If there is a resolution of the P vs. NP problem using
only the two features of diagonalization, then such a
proof must relativize.

 Is it true that

 - either PL = NPL for every L ⊆ {0,1}*,

 - or PL ≠ NPL for every L ⊆ {0,1}* ?

Relativizing results

 If there is a resolution of the P vs. NP problem using
only the two features of diagonalization, then such a
proof must relativize.

 Is it true that

 - either PL = NPL for every L ⊆ {0,1}*,

 - or PL ≠ NPL for every L ⊆ {0,1}* ?

Theorem (Baker, Gill & Solovay 1975): The answer is No.
Any proof of P = NP or P ≠ NP must not relativize.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Using diagonalization!

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Let A = {(M, x,1m): M accepts x in 2m steps}.

 A is an EXP-complete language under poly-time Karp
reduction. (simple exercise)

 Then, PA = EXP.

 Also, NPA = EXP. Hence PA = NPA.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Let A = {(M, x,1m): M accepts x in 2m steps}.

 A is an EXP-complete language under poly-time Karp
reduction. (simple exercise)

 Then, PA = EXP.

 Also, NPA = EXP. Hence PA = NPA.

 Why isn’t EXPA = EXP ?

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: For any language B let

 LB = {1n : there’s a string of length n in B}.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: For any language B let

 LB = {1n : there’s a string of length n in B}.

 Observe, LB ∈ NPB for any B. (Guess the string, check
if it has length n, and ask oracle B to verify
membership.)

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: For any language B let

 LB = {1n : there’s a string of length n in B}.

 Observe, LB ∈ NPB for any B.

 We’ll construct B (using diagonalization) in such a way
that LB ∉ PB, implying PB ≠ NPB.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

whether or not a string belongs to B The machine with oracle access to B
that is represented by i

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

 Clearly, a B satisfying the above implies LB ∉ PB. Why?

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

 Stage i: Choose n larger than the length of any string
whose status has already been decided. Simulate Mi

B
on input 1n for 2n/10 steps.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.

 Stage i: If Mi
B queries oracle B with a string whose

status has already been decided, answer consistently.

 If Mi
B queries oracle B with a string whose

status has not been decided yet, answer ‘No’.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.

 Stage i: If Mi
B outputs 1 within 2n/10 steps then don’t

put any string of length n in B.

 If Mi
B outputs 0 or doesn’t halt, put a string of

length n in B. (This is possible as the status of at most 2n/10 many
length n strings have been decided during the simulation)

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.

 Homework: In fact, we can assume that B ∈ EXP.

