Computational Complexity Theory

Lecture 5: Ladner's theorem, Relativization

Department of Computer Science, Indian Institute of Science

Conjecture: $NP \neq co-NP$ \blacksquare $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Check:

https://cstheory.stackexchange.com/questions/20 021/reasons-to-believe-p-ne-np-cap-conp-or-not

- Integer factoring (FACT) (??)
- Approximate shortest vector in a lattice (??)

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

- Integer factoring (FACT) (??)
- Approximate shortest vector in a lattice (??)

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

- Integer factoring (FACT) (??)
- Approximate shortest vector in a lattice (??)

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

Ladner's theorem: $P \neq NP$ implies existence of a NP-intermediate language.

Recap: Diagonalization

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.
 - 2. Every string represents some TM, and every TM can be represented by <u>infinitely many</u> strings.

Recap: Time Hierarchy Theorem

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. (Hartmanis & Stearns 1965)
 DTIME(f(n)) ⊊ DTIME(g(n))
- Theorem. $P \subsetneq EXP$
- This type of results are called **lower bounds**.

Ladner's Theorem

- Another application of Diagonalization

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NPintermediate language.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NPintermediate language.
 - **Proof.** A delicate argument using diagonalization.

- Definition. A language L in NP is *NP-intermediate* if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

- Definition. A language L in NP is *NP-intermediate* if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

Let $SAT_H = \{\Psi 0 \mid \prod_{m \in W}^{m^{H(m)}} : \Psi \in SAT \text{ and } |\Psi| = m\}$

- Definition. A language L in NP is *NP-intermediate* if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

Let SAT_H = {
$$\Psi 0 | \stackrel{m^{H(m)}}{:} \Psi \in SAT$$
 and $|\Psi| = m$ }

H would be defined in such a way that SAT_H is NP-intermediate (assuming $P \neq NP$)

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant). for every m

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

Proof: Later (uses diagonalization).

Let's see the proof of Ladner's theorem assuming the existence of such a "special" H.

 $P \neq NP$

• Suppose $SAT_H \in P$. Then $H(m) \leq C$.

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:

$P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:

> On input ϕ , find m = $|\phi|$.

$P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I$

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

> Check if $\phi 0 I$ belongs to SAT_H .

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

> Check if $\phi 0 I$ belongs to SAT_{H} .

• As $P \neq NP$, it must be that $SAT_H \notin P$.

 $P \neq NP$

• Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_p SAT_H \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$

 $\varphi \xrightarrow{f} \Psi 0 I^{k}$
 $\varphi \xrightarrow{f} \Psi 0 I^{k}$
 $|\varphi| = n$ $|\Psi 0 I^{k}| = n^{c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

$P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{t}{\longmapsto} \Psi \circ I^{k}$

Let m_0 be the largest s.t. $H(m_0) \leq 2c$.

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- Compute H(m) and check if k = m^{H(m)}. (Homework: Verify that this can be done in poly(n) time.)

$P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_p SAT_H \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

> Compute H(m) and check if $k = m^{H(m)}$.

Either $m \le m_0$ (in which case the task reduces to checking if a constant-size Ψ is satisfiable),

$P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

> Compute H(m) and check if $k = m^{H(m)}$.

or H(m) > 2c (as H(m) tends to infinity with m).

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, w.l.o.g. $|f(\phi)| \ge k \ge m^{2c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, w.l.o.g. $n^{c} = |f(\phi)| \ge k \ge m^{2c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$

 \Rightarrow On input ϕ , compute $f(\phi) = \Psi \circ I^{k}$. Let $m = |\Psi|$.
 \Rightarrow Compute H(m) and check if $k = m^{H(m)}$.
 \Rightarrow Hence, $\sqrt{n} \geq m$.
$P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- \succ Hence, $\sqrt{n} \ge m$. Also φ ∈ SAT iff Ψ ∈ SAT

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$. > Compute H(m) and check if $k = m^{H(m)}$.
- \succ Hence, $\sqrt{n} \ge m$. Also φ ∈ SAT iff Ψ ∈ SAT

Thus, checking if an n-size formula ϕ is satisfiable reduces to checking if a \sqrt{n} -size formula Ψ is satisfiable.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$

- > On input \$\overline\$, compute \$f(\$\overline\$) = \$\Psi\$ 0 \$I^k\$. Let \$m = |\$\Psi\$|\$.
 > Compute \$H(\$m\$)\$ and check if \$k = \$m^{H(\$m\$)}\$.
 > Hence\$, \$\sqrt{n}\$ ≥ \$m\$. Also \$\$\overline\$ ∈ SAT\$ iff \$\$\Psi\$ ∈ SAT\$
 - Hence, $\forall n \ge m$. Also $\psi \in SAT$ in $\Psi \in SAT$

Do this recursively! Only O(log log n) recursive steps required.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$

- On input \$\overline{\overline{0}}\$, compute \$f(\overline{\overline{0}}\$) = \$\Psi\$ 0 \$I^k\$. Let \$m = |\$\Psi\$|\$.
 Compute \$H(m)\$ and check if \$k = \$m^{H(m)}\$.
- \succ Hence, $\sqrt{n} \ge m$. Also φ ∈ SAT iff Ψ ∈ SAT
- Hence SAT_H is not NP-complete, as $P \neq NP$.

Ladner's theorem: Properties of H

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

• SAT_H = { Ψ 0 | $^{m^{H(m)}}$: $\Psi \in$ SAT and $|\Psi| = m$ }

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).

- Observation. The value of H(m) determines membership in SAT_{H} of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Think of computing H(m) sequentially: Compute H(1), H(2),...,H(m-1). Just before computing H(m), find SAT_H \cap {0,1}^{log m}.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Construction. H(m) is the smallest $k < \log \log m$ s.t.
 - I. M_k decides membership of <u>all</u> length up to log m strings x in SAT_H within k.|x|^k time.
 - 2. If no such k exists then $H(m) = \log \log m$.

- Observation. The value of H(m) determines membership in SAT_{H} of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Homework. Prove that H(m) is computable from m in O(m³) time.

- Claim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- **Proof.** There is a poly-time M that decides membership of every x in SAT_H within c.|x|^c time.

- Claim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- **Proof.** There is a poly-time M that decides membership of every x in SAT_H within c.|x|^c time.
- As M can be represented by infinitely many strings, there's $an\alpha \ge c$ s.t. $M = M_{\alpha}$ decides membership of every x in SAT_H within $\alpha |x|^{\alpha}$ time.
- So, for every m satisfying $\alpha < \log \log m$, $H(m) \leq \alpha$.

- Claim. If $H(m) \leq C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many m.

- Claim. If $H(m) \leq C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many m.
- Pick any $x \in \{0, I\}^*$. Think of a large enough m s.t. $|x| \leq \log m$ and H(m) = k.

- Claim. If $H(m) \leq C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many m.
- Pick any $x \in \{0,1\}^*$. Think of a large enough m s.t. $|x| \le \log m$ and H(m) = k.
- This means x is correctly decided by M_k in k.|x|^k time.
 So, M_k is a poly-time machine deciding SAT_H.

Natural NP-intermediate problems ??

- Integer factoring
- Approximate shortest vector in a lattice
- Minimum Circuit Size Problem

("Multi-output MCSP is NP-hard", Ilango, Loff & Oliveira 2020)

• Graph isomorphism

Limits of diagonalization

 Like in the proof of P ≠ EXP, can we use diagonalization to show P ≠ NP ?

Limits of diagonalization

- Like in the proof of P ≠ EXP, can we use diagonalization to show P ≠ NP ?
- The answer is No, if one insists on <u>using only the two</u> <u>features of diagonalization</u>.
- The proof of this fact <u>uses diagonalization</u> and the notion of *oracle Turing machines*!

Oracle Turing Machines

• Definition: Let $L \subseteq \{0, I\}^*$ be a language. An <u>oracle TM</u> M^{L} is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^L has oracle access to L)

Oracle Turing Machines

- Definition: Let $L \subseteq \{0, I\}^*$ be a language. An <u>oracle TM</u> M^{L} is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^L has oracle access to L)
- Think of physical realization of M^L as a device with access to a subroutine that decides L. We don't count the time taken by the subroutine.

Oracle Turing Machines

- We can define a <u>nondeterministic</u> Oracle TM similarly.
- "Important note": Oracle TMs (deterministic/nondeterministic) have the same two features used in diagonalization: For any fixed L ⊆ {0,1}*,
 - I. There's an efficient universal TM with oracle access to L,
 - 2. Every M^{L} has infinitely many representations.

Complexity classes using oracles

Definition: Let L ⊆ {0,1}* be a language. Complexity classes P^L, NP^L and EXP^L are defined just as P, NP and EXP respectively, but with TMs replaced by oracle TMs with oracle access to L in the definitions of P, NP and EXP respectively. For e.g. SAT ∈ P^{SAT}

Complexity classes using oracles

- Definition: Let L ⊆ {0,1}* be a language. Complexity classes P^L, NP^L and EXP^L are defined just as P, NP and EXP respectively, but with TMs replaced by oracle TMs with oracle access to L in the definitions of P, NP and EXP respectively. For e.g. SAT ∈ P^{SAT}
- Such complexity classes help us identify a class of complexity theoretic proofs called *relativizing proofs*.

Relativization

- Observation: Let L ⊆ {0,1}* be an arbitrarily fixed language. Owing to the "Important note", the proof of P ≠ EXP can be easily adapted to prove P^L ≠ EXP^L by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result/proof <u>relativizes</u>.

- Observation: Let L ⊆ {0,1}* be an arbitrarily fixed language. Owing to the "Important note", the proof of P ≠ EXP can be easily adapted to prove P^L ≠ EXP^L by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result/proof <u>relativizes</u>.
- Observation: Let L ⊆ {0,1}* be an arbitrarily fixed language. Owing to the 'Important note', any proof/result that uses only the two features of diagonalization <u>relativizes</u>.

- If there is a resolution of the P vs. NP problem <u>using</u>
 <u>only the two features</u> of diagonalization, then such a proof must relativize.
- Is it true that
 - either $P^{L} = NP^{L}$ for every $L \subseteq \{0, I\}^{*}$,
 - or $P^{L} \neq NP^{L}$ for every $L \subseteq \{0, I\}^{*}$?

- If there is a resolution of the P vs. NP problem <u>using</u>
 <u>only the two features</u> of diagonalization, then such a proof must relativize.
- Is it true that
 - either $P^{L} = NP^{L}$ for every $L \subseteq \{0, I\}^{*}$,
 - or $P^{L} \neq NP^{L}$ for every $L \subseteq \{0, I\}^{*}$?

Theorem (Baker, Gill & Solovay 1975): The answer is No. Any proof of P = NP or $P \neq NP$ must <u>**not**</u> relativize.

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- **Proof:** Using diagonalization!

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Let $A = \{(M, x, I^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under poly-time Karp reduction. *(simple exercise)*
- Then, $P^A = EXP$.
- Also, $NP^A = EXP$. Hence $P^A = NP^A$.

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Let $A = \{(M, x, I^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under poly-time Karp reduction. *(simple exercise)*
- Then, $P^A = EXP$.
- Also, $NP^A = EXP$. Hence $P^A = NP^A$.

Why isn't $EXP^A = EXP$?

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let

 $L_B = \{I^n : \text{there's a string of length } n \text{ in } B\}.$

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let
 L_B = { Iⁿ : there's a string of length n in B}.
- Observe, $L_B \in NP^B$ for any B. (Guess the string, check if it has length n, and ask oracle B to verify membership.)

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let
 L_B = { Iⁿ : there's a string of length n in B}.
- Observe, $L_B \in NP^B$ for any B.
- We'll construct B (using diagonalization) in such a way that L_B ∉ P^B, implying P^B ≠ NP^B.

Constructing B

- We'll construct B in stages, starting from Stage I.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M^B_i doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.

Constructing B

- We'll construct B in stages, starting from Stage I.
- Each stage determines the <u>status</u> of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M^B_i doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.

whether or not a string belongs to B

The machine with oracle access to B that is represented by i

Constructing B

- We'll construct B in stages, starting from Stage I.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M^B_i doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.
- Clearly, a B satisfying the above implies $L_B \notin P^B$. Why?
- We'll construct B in stages, starting from Stage I.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M^B_i doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.
- Stage i: Choose n larger than the length of any string whose status has already been decided. Simulate M^B_i on input Iⁿ for 2ⁿ/10 steps.

- We'll construct B in stages, starting from Stage I.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
- Stage i: If M_i^B queries oracle B with a string whose status has already been decided, answer consistently.
 If M_i^B queries oracle B with a string whose status has <u>not</u> been decided yet, answer 'No'.

- We'll construct B in stages, starting from Stage I.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.

 Stage i: If M^B_i outputs I within 2ⁿ/10 steps then don't put any string of length n in B. If M^B_i outputs 0 or doesn't halt, put a string of length n in B.
 (This is possible as the status of at most 2ⁿ/10 many length n strings have been decided during the simulation)

- We'll construct B in stages, starting from Stage I.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
- Homework: In fact, we can assume that $B \in EXP$.