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Recap: Class co-NP 

NP co-NP 

P 
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Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
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NP co-NP 
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NPC co-NPC 

Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Check:  
https://cstheory.stackexchange.com/questions/20
021/reasons-to-believe-p-ne-np-cap-conp-or-not 

• Integer factoring (FACT) (??) 
• Approximate shortest vector in a lattice  (??) 
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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then FACT is NP-intermediate. 
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Recap: Class co-NP 

NP co-NP 

P 

NPC co-NPC 

Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Obs: If NP ≠ co-NP and FACT ∉ P 
then FACT is NP-intermediate. 
 
Ladner’s theorem: P ≠ NP implies 
existence of a NP-intermediate 
language. 
 • Integer factoring (FACT) (??) 

• Approximate shortest vector in a lattice  (??) 
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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Recap: Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

 

2. Every string represents some TM,  and every 
TM can be represented by infinitely many 
strings. 



Recap:  Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem. (Hartmanis & Stearns 1965)  

           DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

 

 This type of results are called lower bounds. 

       



Ladner’s Theorem 

- Another application of Diagonalization 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  
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NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.  

   Proof.   A delicate argument using diagonalization. 
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neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  
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neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  

          

    Let    SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}    
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H(m) 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  

          

    Let    SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}    

 

m 
H(m) 

H would be defined in such a way that SATH is NP-intermediate 
                             (assuming P ≠ NP ) 



Ladner’s theorem:  Constructing  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 
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Ladner’s theorem:  Constructing  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

   Proof:   Later (uses diagonalization). 

∞ 

Let’s see the proof of Ladner’s theorem 
assuming the existence of such a “special” H. 



Ladner’s theorem:  Proof 
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 Suppose SATH ∈ P.   Then H(m)  ≤  C. 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 

 

m 
H(m) 

m 
H(m) 

length at most  m + 1 + mC 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 

 

 As P  ≠ NP, it must be that SATH  ∉  P . 

m 
H(m) 

m 
H(m) 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 
∞ 
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SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

|ϕ| = n |Ψ 0 1k| = nc 

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m).  (Homework:  Verify that 
this can be done in poly(n) time.) 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

Either m ≤ m0 (in which case the task reduces to 
checking if a constant-size Ψ is satisfiable),  

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

or H(m) > 2c (as H(m) tends to infinity with m). 

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 
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 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence, w.l.o.g.               |f(ϕ)|  ≥  k ≥  m2c 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 
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Thus, checking if an n-size formula ϕ 
is satisfiable reduces to checking if a 
√n-size formula Ψ is satisfiable. 
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                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 
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SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 
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Do this recursively!   Only O(log log n) recursive steps required. 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

 Hence SATH is not NP-complete, as P  ≠ NP. 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 



Ladner’s theorem:  Properties of  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

 

 SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}  

∞ 

m 
H(m) 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).  

 

 Think of computing H(m) sequentially: Compute H(1), 
H(2),…,H(m-1). Just before computing H(m), find 
SATH ∩ {0,1}log m. 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 Construction.  H(m) is the smallest k < log log m s.t. 

1. Mk decides membership of all length up to   
log m strings x in SATH within k.|x|k time.   

2. If no such k exists then H(m) = log log m. 

 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 Homework.  Prove that H(m) is computable from m 
in O(m3) time. 



Construction of  H 

 Claim.  If  SATH ∈ P then H(m)  ≤  C  (a constant). 

 Proof.  There is a poly-time M that decides 
membership of every x in SATH within c.|x|c time.  



Construction of  H 

 Claim.  If  SATH ∈ P then H(m)  ≤  C  (a constant). 

 Proof.  There is a poly-time M that decides 
membership of every x in SATH within c.|x|c time.  

 

 As M can be represented by infinitely many strings, 
there’s anα ≥ c s.t. M = Mα decides membership of 
every x in SATH within α.|x|α time.  

 

 So, for every m satisfying α < log log m,  H(m) ≤ α.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  

 

 Pick any x ∈ {0,1}*.  Think of a large enough m s.t.      
|x| ≤ log m and H(m) = k.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  

 

 Pick any x ∈ {0,1}*.  Think of a large enough m s.t.      
|x| ≤ log m and H(m) = k.  

 

 This means x is correctly decided by Mk in k.|x|k time. 
So, Mk is a poly-time machine deciding SATH. 



Natural NP-intermediate problems ?? 

 

 Integer factoring 

 

 Approximate shortest vector in a lattice 

 

 Minimum Circuit Size Problem 

       (“Multi-output MCSP is NP-hard”,   Ilango, Loff & Oliveira  2020) 

 

 Graph isomorphism   

       



Limits of diagonalization 

 Like in the proof of P ≠ EXP, can we use 
diagonalization to show P ≠ NP ?  



Limits of diagonalization 

 Like in the proof of P ≠ EXP, can we use 
diagonalization to show P ≠ NP ?  

 

 The answer is No, if one insists on using only the two 
features of diagonalization. 

 

 The proof of this fact uses diagonalization and the 
notion of oracle Turing machines! 



Oracle Turing Machines 

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM 
ML is a TM with a special query tape and three special 
states qquery, qyes and qno such that whenever the 
machine enters the qquery state, it immediately transits 
to qyes or qno depending on whether the string in the 
query tape belongs to L.     (ML has oracle access to L) 



Oracle Turing Machines 

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM 
ML is a TM with a special query tape and three special 
states qquery, qyes and qno such that whenever the 
machine enters the qquery state, it immediately transits 
to qyes or qno depending on whether the string in the 
query tape belongs to L.     (ML has oracle access to L) 

 

 Think of physical realization of ML as a device with 
access to a subroutine that decides L. We don’t count 
the time taken by the subroutine.  

 



Oracle Turing Machines 

 

 We can define a nondeterministic Oracle TM similarly. 

 

 “Important note”: Oracle TMs 
(deterministic/nondeterministic) have the same two 
features used in diagonalization:  For any fixed L ⊆ 
{0,1}*, 

          1.  There’s an efficient universal TM with oracle access to L,  

            2.  Every ML has infinitely many representations.  

 



Complexity classes using oracles 

 

 Definition: Let L ⊆ {0,1}* be a language. Complexity 
classes PL, NPL and EXPL are defined just as P, NP and 
EXP respectively, but with TMs replaced by oracle TMs 
with oracle access to L in the definitions of P, NP and 
EXP respectively.    For e.g.  SAT ∈  PSAT 
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 Definition: Let L ⊆ {0,1}* be a language. Complexity 
classes PL, NPL and EXPL are defined just as P, NP and 
EXP respectively, but with TMs replaced by oracle TMs 
with oracle access to L in the definitions of P, NP and 
EXP respectively.    For e.g.  SAT ∈  PSAT 

 

 Such complexity classes help us identify a class of 
complexity theoretic proofs called relativizing proofs.  



Relativization 



Relativizing results 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the “Important note”, the proof of 
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by 
working with TMs with oracle access to L. 

 We say that the P ≠ EXP result/proof relativizes. 

 



Relativizing results 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the “Important note”, the proof of 
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by 
working with TMs with oracle access to L. 

 We say that the P ≠ EXP result/proof relativizes. 

 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the ‘Important note’, any 
proof/result that uses only the two features of 
diagonalization relativizes. 



Relativizing results 

 If there is a resolution of the P vs. NP problem using 
only the two features of diagonalization, then such a 
proof must relativize.  

 Is it true that  

 - either PL = NPL for every L ⊆ {0,1}*, 

 - or     PL ≠ NPL for every L ⊆ {0,1}* ?  

 



Relativizing results 

 If there is a resolution of the P vs. NP problem using 
only the two features of diagonalization, then such a 
proof must relativize.  

 Is it true that  

 - either PL = NPL for every L ⊆ {0,1}*, 

 - or     PL ≠ NPL for every L ⊆ {0,1}* ?  

 

Theorem (Baker, Gill & Solovay 1975):  The answer is No.  
Any proof of P = NP or P ≠ NP must not relativize. 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof: Using diagonalization! 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof:  Let A = {(M, x,1m):   M accepts x in 2m steps}. 

 A is an EXP-complete language under poly-time Karp 
reduction.  (simple exercise) 

 

 Then, PA = EXP. 

 Also, NPA = EXP.  Hence PA = NPA. 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof:  Let A = {(M, x,1m):   M accepts x in 2m steps}. 

 A is an EXP-complete language under poly-time Karp 
reduction.  (simple exercise) 

 

 Then, PA = EXP. 

 Also, NPA = EXP.  Hence PA = NPA. 

 Why isn’t EXPA = EXP ? 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB. 

  Proof:  For any language B let 

             LB = {1n : there’s a string of length n in B}. 

 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB. 

  Proof:  For any language B let 

             LB = {1n : there’s a string of length n in B}. 

 

 Observe, LB ∈ NPB for any B. (Guess the string, check 
if it has length n, and ask oracle B to verify 
membership.) 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB. 

  Proof:  For any language B let 

             LB = {1n : there’s a string of length n in B}. 

 

 Observe, LB ∈ NPB for any B.  

 

 We’ll construct B (using diagonalization) in such a way 
that LB ∉ PB, implying PB ≠ NPB. 

 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 
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strings. 
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B doesn’t 
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Moreover, n will grow monotonically with stages. 
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Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 

 

 Clearly, a B satisfying the above implies LB ∉ PB.   Why? 

 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 

 

 Stage i: Choose n larger than the length of any string 
whose status has already been decided. Simulate Mi

B 
on input 1n for 2n/10 steps. 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 

 

 Stage i:   If Mi
B queries oracle B with a string whose 

status has already been decided, answer consistently. 

           If Mi
B queries oracle B with a string whose 

status has not been decided yet, answer ‘No’. 
 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 

 

 Stage i:   If Mi
B outputs 1 within 2n/10 steps then don’t 

put any string of length n in B. 

               If Mi
B outputs 0 or doesn’t halt, put a string of 

length n in B.   (This is possible as the status of at most 2n/10 many 
length n strings have been decided during the simulation) 
 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 

 

 Homework:  In fact, we can assume that B ∈ EXP. 


