Computational Complexity Theory

Lecture 6: Class L, NL & PSPACE; Savitch's theorem, PSPACE-completeness

Department of Computer Science, Indian Institute of Science

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \to N$ be a function. A language L is in DSPACE(S(n)) if there's a TM M that decides L using O(S(n)) work space on inputs of length n.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \rightarrow N$ be a function. A language L is in NSPACE(S(n)) if there's a NTM M that decides L using O(S(n)) work space on inputs of length n, regardless of M's nondeterministic choices.

- We'll refer to 'work space' as 'space'. For convenience, assume there's a single work tape.
- If the output has many bits, then we will assume that the TM has a separate write-only <u>output tape</u>.

- We'll refer to 'work space' as 'space'. For convenience, assume there's a single work tape.
- If the output has many bits, then we will assume that the TM has a separate write-only <u>output tape</u>.
- Definition. Let S: $N \longrightarrow N$ be a function. S is <u>space</u> <u>constructible</u> if $S(n) \ge \log n$ and there's a TM that computes S(|x|) from x using O(S(|x|)) space.

Hopcroft, Paul & Valiant 1977

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Proof. Uses the notion of <u>configuration graph</u> of a TM.
 We'll see this shortly.

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
    Definition.
    L = DSPACE(log n)
    NL = NSPACE(log n)
    PSPACE = U DSPACE(n<sup>c</sup>)
```

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
• Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = \bigcup_{c>0} DSPACE(n^c)
```

Giving space at least log n gives a TM at least the power to remember the index of a cell.

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Theorem. L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP

Run through all certificate choices of the verifier and reuse space.

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

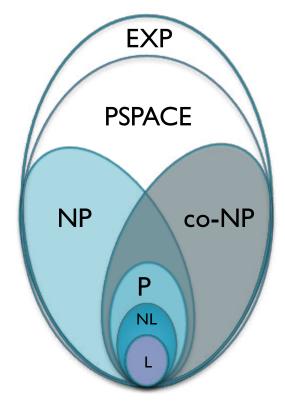
• Theorem. L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP

Follows from the above theorem

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is

space constructible.



• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

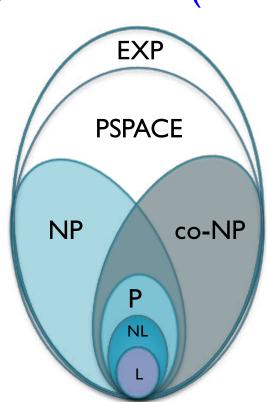
• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is

space constructible.

Homework: Integer addition and multiplication are in (functional) L.

Integer division is also in (functional)

L. (Chiu, Davida & Litow 2001)

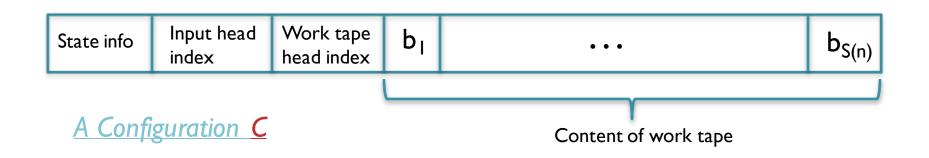


- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.

- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.



- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.

Note: A configuration C can be represented using O(S(n)) bits if M uses $S(n) = \Omega(\log n)$ space on n-bit inputs.

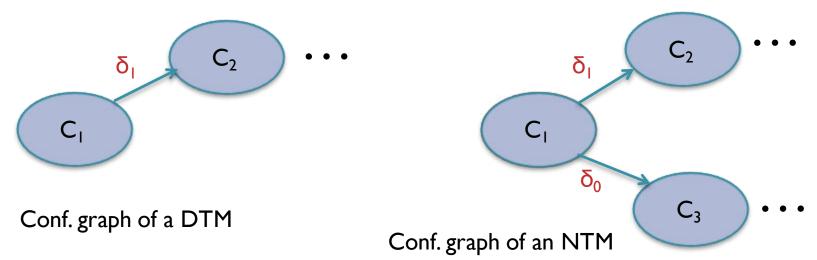
• Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

• Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

• Number of nodes in $G_{M,x} = 2^{O(S(n))}$, if M uses S(n) space on n-bit inputs

- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- If M is a DTM then every node C in $G_{M,x}$ has at most one outgoing edge. If M is an NTM then every node C in $G_{M,x}$ has at most two outgoing edges.

• Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).



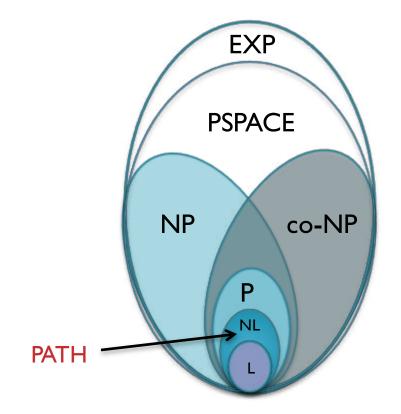
- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- By erasing the contents of the work tape at the end, bringing the head at the beginning, and having a q_{accept} state, we can assume that there's a unique C_{accept} configuration. Configuration C_{start} is well defined.

• Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

• M accepts x if and only if there's a path from C_{start} to C_{accept} in $G_{\text{M.x}}$.

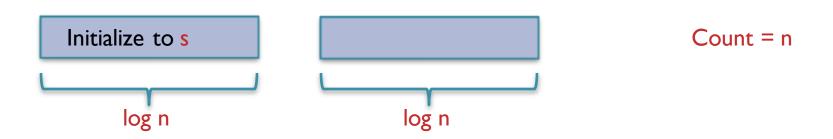
- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Proof. Let L ∈ NSPACE(S(n)) and M be an NTM deciding L using O(S(n)) space on length n inputs.
- On input x, compute the configuration graph $G_{M,x}$ of M and check if there's a **path** from C_{start} to C_{accept} . Running time is $2^{O(S(n))}$.

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.



- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each.
 Initialize a counter, say Count = n.



- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each.
 Initialize a counter, say Count = n.

Initialize to s

Guess a vertex V

Count = n

If there's a edge from s to v_1 , decrease count by 1. Else o/p 0 and stop.

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each.
 Initialize a counter, say Count = n.

Set to v_I

Guess a vertex v₂

Count = n-I

If there's a edge from v_1 to v_2 , decrease count by 1. Else o/p 0 and stop.

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each.
 Initialize a counter, say Count = n.

Set to v_2 Guess a vertex v_3 Count = n-2

If there's a edge from v_2 to v_3 , decrease count by 1. ...and so on.

Else o/p 0 and stop.

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each.
 Initialize a counter, say Count = n.

Set to v_{n-1}

Set to t

Count = I

If there's a edge from v_{n-1} to t, o/p | and stop. Else o/p | 0 and stop.

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each.
 Initialize a counter, say Count = n.

Set to v_{n-I}

Set to t

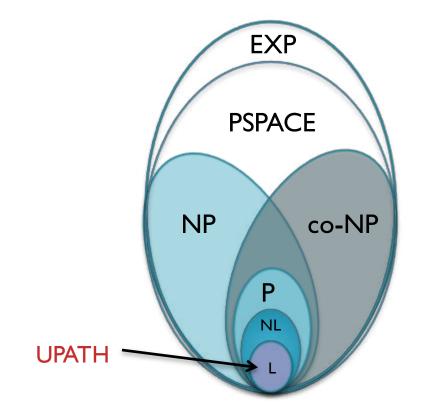
Count = I

If there's a edge from v_{n-1} to t, o/p | and stop. Else o/p | and stop.

Space complexity = O(log n)

UPATH: A problem in L

- UPATH = {(G,s,t) : G is an undirected graph having a path from s to t}.
- Theorem (Reingold 2005). UPATH is in L.



UPATH: A problem in L

- UPATH = {(G,s,t) : G is an undirected graph having a path from s to t}.
- Theorem (Reingold 2005). UPATH is in L.

```
Is PATH in L?

If yes, then L = NL!

(will prove later)

PSPACE

PSPACE

NP

PONL

L

UPATH
```

Space Hierarchy Theorem

Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g are space-constructible functions and f(n) = o(g(n)), then SPACE(f(n)) ⊊ SPACE(g(n)).

• Proof. Homework.

• Theorem. L ⊊ PSPACE.

PSPACE = NPSPACE

Savitch's theorem

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. Let $L \in NSPACE(S(n))$, and M be an NTM requiring O(S(n)) space to decide L. We'll show that there's a TM N requiring $O(S(n)^2)$ space to decide L.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. Let $L \in NSPACE(S(n))$, and M be an NTM requiring O(S(n)) space to decide L. We'll show that there's a TM N requiring $O(S(n)^2)$ space to decide L.
- On input x, N checks if there's a path from C_{start} to C_{accept} in $G_{\text{M,x}}$ as follows: Let |x| = n.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. (contd.) N computes m = O(S(n)), the no. of bits required to represent a configuration of M. It also finds out C_{start} and C_{accept} . Then N checks if there's a path from C_{start} to C_{accept} of length at most 2^m in $G_{\text{M,x}}$ recursively using the following procedure.
- REACH(C_1 , C_2 , i): returns I if there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$; 0 otherwise.

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Space constructibility of S(n) used here

- Proof. (contd.) N computes m = O(S(n)), the no. of bits required to represent a configuration of M. It also finds out C_{start} and C_{accept} . Then N checks if there's a path from C_{start} to C_{accept} of length at most 2^m in $G_{\text{M,x}}$ recursively using the following procedure.
- REACH(C_1 , C_2 , i): returns I if there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$; 0 otherwise.

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
Proof.
```

```
• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1)

a_2 = \text{REACH}(C, C_2, i-1)

if a_1=1 \& a_2=1, return 1. Else return 0.
```

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
• Proof.

• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1)

a_2 = \text{REACH}(C, C_2, i-1)

if a_1 = 1 \& a_2 = 1, return 1. Else return 0.
```

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
Proof.
```

```
• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1)

a_2 = \text{REACH}(C, C_2, i-1)

If a_1 = 1 & a_2 = 1, return 1. Else return 0.
```

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

$$Time(i) = 2m.2.Time(i-1) + O(S(n))$$

• Time complexity: 2^{O(S(n)²)}

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

$$Time(i) = 2m.2.Time(i-1) + O(S(n))$$

• Time complexity: 2^{O(S(n)²)}

Recall, NSPACE(S(n)) \subseteq DTIME(2 $^{\circ}$ (S(n))). There's an algorithm with time complexity 2° (S(n)), but higher space requirement.

PSPACE-completeness

PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ?

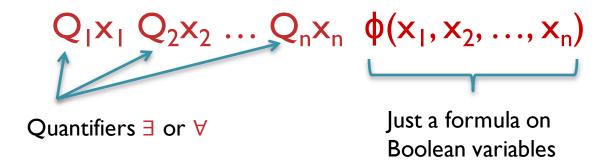
PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ...use poly-time Karp reduction!
- Definition. A language L' is *PSPACE-hard* if for every L in PSPACE, $L \leq_p L'$. Further, if L' is in PSPACE then L' is *PSPACE-complete*.

A PSPACE-complete problem

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ...use poly-time Karp reduction!
- Example. L' = {(M,w,I^m) : M accepts w using m space}

• Definition. A quantified Boolean formula (QBF) is a formula of the form



 A QBF is either <u>true</u> or <u>false</u> as all variables are quantified. This is unlike a formula we've seen before where variables were <u>unquantified/free</u>.

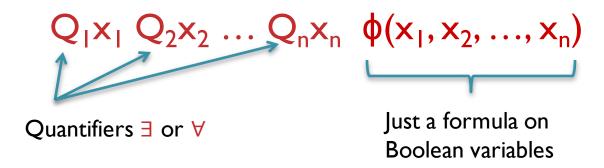
- Example. $\exists x_1 \exists x_2 ... \exists x_n \ \phi(x_1, x_2, ..., x_n)$
- The above QBF is true iff ϕ is satisfiable.

We could have defined SAT as

```
SAT = \{\exists x \phi(x) : \phi \text{ is a CNF and } \exists x \phi(x) \text{ is true} \} instead of
```

SAT = $\{\phi(x) : \phi \text{ is a CNF and } \phi \text{ is satisfiable}\}$

• Definition. A quantified Boolean formula (QBF) is a formula of the form



 Homework: By using auxiliary variables (as in the proof of Cook-Levin) and introducing some more ∃ quantifiers at the end, we can assume w.l.o.g. that ф is a 3CNF.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: Easy to see that TQBF is in PSPACE just think of a suitable recursive procedure. We'll now show that every L ∈ PSPACE reduces to TQBF via poly-time Karp reduction...

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

 $x \in L$ $\stackrel{f}{\longleftrightarrow} \psi_x$ is a true QBF

Size of ψ_x must be bounded by poly(n), where |x| = n

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$x \in L$$
 $\longleftrightarrow \psi_x$ is a true QBF

Idea: Form ψ_x in such a way that ψ_x is true iff there's a path from C_{start} to C_{accept} in $G_{\text{M},x}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$.

The variables corresponding to the bits of C_1 and C_2 are unquantified/free variables of Δ_i

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(first attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \left(\Delta_{i-1}(C_{1},C) \wedge \Delta_{i-1}(C,C_{2})\right)$$

Issue: Size of Δ_i is **twice** the size of Δ_{i-1} !!

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(careful attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \forall D_{1} \forall D_{2}$$

$$\left(\left(\left(D_{1} = C_{1} \wedge D_{2} = C \right) \vee \left(D_{1} = C \wedge D_{2} = C_{2} \right) \right) \implies \Delta_{i-1}(D_{1},D_{2}) \right)$$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(careful attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \forall D_{1} \forall D_{2}$$

$$\left(\neg \left((D_{1} = C_{1} \land D_{2} = C) \lor (D_{1} = C \land D_{2} = C_{2}) \right) \lor \Delta_{i-1}(D_{1},D_{2}) \right)$$
Note: Size of $\Delta_{i} = O(S(n)) + Size$ of Δ_{i-1}

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{start}, C_{accept})$$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{start}, C_{accept})$$

- But, we need to specify how to form $\Delta_0(C_1,C_2)$.
- Size of $\psi_x = O(S(n)^2) + Size of \Delta_0$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{start}, C_{accept})$$

- But, we need to specify how to form $\Delta_0(C_1,C_2)$.
- Size of $\psi_x = O(S(n)^2) + Size of \Delta_0$

Remark: We can easily bring all the quantifiers at the beginning in ψ_{\times} (as in *prenex normal form*).

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_x = \Delta_m(C_{\text{start}}, C_{\text{accept}})$$

- But, we need to specify how to form $\Delta_0(C_1,C_2)$.
- Size of $\psi_x = O(S(n)^2) + Size of \Delta_0$??

Adjacent configurations

• Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n)) inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.

• Proof. Think of a <u>linear time</u> algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$.

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n)) inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a <u>linear time</u> algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$. Applying ideas from the proof of Cook-Levin theorem, we get our desired $\phi_{M,x}$ of size $O(S(n)^2)$.

Size of Δ_0

- Obs. We can convert the circuit $\phi_{M,x}(C_1, C_2)$ to a quantified CNF $\Delta_0(C_1,C_2)$ by introducing auxiliary variables (as in the proof of Cook-Levin theorem).
- Hence, size of $\Delta_0(C_1,C_2)$ is $O(S(n)^2)$.
- Therefore, size of $\psi_x = O(S(n)^2)$.

Other PSPACE complete problems

 Checking if a player has a winning strategy in certain two-player games, like (generalized) Hex, Reversi, Geography etc.

• Integer circuit evaluation (Yang 2000).

Implicit graph reachability.

 Check the wiki page: https://en.wikipedia.org/wiki/List_of_PSPACEcomplete_problems