= Computational Complexity Theory

Lecture 6: Class L, NL & PSPACE; Savitch’s
theorem, PSPACE-completeness

Department of Computer Science,
Indian Institute of Science

Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

° Let S: N — N be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

° Let S: N — N be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s hondeterministic choices.

Space bounded computation

* We'll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

e If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

Space bounded computation

* We'll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

e If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

g Let S: N — N be a function. S is space
constructible if S(n) = log n and there’s a TM that
computes S(|x|) from x using O(S(|x|)) space.

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) S NSPACE(S(n)).

N

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) € DTIME2C6GM), if S is
space constructible.

* Proof. Uses the notion of configuration graph of a TM.
We'll see this shortly.

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) € DTIME2C6GM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n¢)

c>0

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) € DTIME2C6GM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n¢)

c>0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) € DTIME2C6GM), if S is
space constructible.

e Theorem.L € NL € P € NP < PSPACE < EXP

;

Run through all certificate
choices of the verifier and
reuse space.

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) € DTIME2C6GM), if S is
space constructible.

e Theorem.L € NL € P € NP < PSPACE < EXP

N

Follows from the above theorem

Relation between time and space

o Obs. DTIME(S(n)) < DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) S DTIMEQ2CCM), if S is
space constructible.

Relation between time and space

o Obs. DTIME(S(n)) < DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) S DTIMEQ2CCM), if S is
space constructible.

Homeworl Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

Configuration graph

o A configuration of a TM M on input x, at any
particular step of its execution, consists of

(a) the nonblank symbols of its work tapes,

(b) the current state,

(c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Configuration graph

A configuration of a TM M on input x, at any

particular step of its execution, consists of

() t
(b) t

(c) t

ne nonblank symbols of its work tapes,

ne current state,

ne current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

State info

index

Input head | Work tape bl

I:)S(n)

head index

| J
|

Content of work tape

(@

Configuration graph

A configuration of a TM M on input x, at any

particular step of its execution, consists of

() t
(b) t

(c) t

ne nonblank symbols of its work tapes,

ne current state,

ne current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

State info

index

Input head | Work tape bl

I:)S(n)

head index

A configuration C can be represented using O(S(n))
bits if M uses S(n) = 2(log n) space on n-bit inputs.

Configuration graph

° A configuration graph of a TM M on input x,
denoted Gy, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

Configuration graph

° A configuration graph of a TM M on input x,
denoted Gy, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* Number of nodes in Gy, = 2°9CM) if M uses S(n)
space on n-bit inputs

Configuration graph

° A configuration graph of a TM M on input x,
denoted Gy, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* If M is a DTM then every node C in Gy, has at most
one outgoing edge. If M is an NTM then every node C
in Gy, has at most two outgoing edges.

Configuration graph

° A configuration graph of a TM M on input x,
denoted Gy, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

Conf. graph of a DTM
Conf. graph of an NTM

Configuration graph

° A configuration graph of a TM M on input x,
denoted Gy, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* By erasing the contents of the work tape at the end,
bringing the head at the beginning, and having a q, ...
state, we can assume that there’s a unique C
configuration. Configuration C__ . is well defined.

accept

start

Configuration graph

° A configuration graph of a TM M on input x,
denoted Gy, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* M accepts x if and only if there’s a path from C__ . to
Caccept in GM,X‘

Relation between time and space

» Obs. DTIME(S(n)) & DSPACE(S(n)) < NSPACE(S(n)).

e Theorem. NSPACE(S(n)) € DTIME2C6GM), if S is
space constructible.

* Proof. Let L € NSPACE(S(n)) and M be an NTM
deciding L using O(S(n)) space on length n inputs.

e On input x, compute the configuration graph G, of
M and check if there’s a path from C,, to C
Running time is 2°960),

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

PATH

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

* Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = n.

Initialize to s Count =n

I I
log n log n

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

* Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = n.

Initialize to s Guess a vertex v, Count =n

If there’s a edge from s to
v, decrease count by |.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path

from s to t}.
e Obs. PATH is in NL.

* Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = n.

Set to v,

Guess a vertex v,

If there’s a edge from v, to
v,, decrease count by |.
Else o/p 0 and stop.

Count = n-1

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

* Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = n.

Set to v, Guess a vertex v; Count = n-2

If there’s a edge from v, to
v3, decrease count by |. ...and so on.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

* Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = n.

Setto v, | Settot Count = |

If there’s a edge from v,
to t,o/p | and stop.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

* Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = n.

Setto v, | Settot Count = |

If there’s a edge from v,
to t,o/p | and stop.

Space complexity = O(log n) Else o/p 0 and stop.

UPATH: A problem in L

e UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

e Theorem (Reingold 2005). UPATH is in L.

UPATH

UPATH: A problem in L

e UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

e Theorem (Reingold 2005). UPATH is in L.

Is PATH in L?
If yes, then L = NL!
(will prove later)

UPATH

Space Hierarchy Theorem

e Theorem. If fand g
are space-constructible functions and f(n) = o(g(n)),
then SPACE(f(n)) & SPACE(g(n)).

e Proof.

e Theorem. L < PSPACE.

PSPACE = NPSPACE

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

* Proof. Let L € NSPACE(S(n)), and M be an NTM

requiring O(S(n)) space to decide L. We'll show that
there’s aTM N requiring O(S(n)?) space to decide L.

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

* Proof. Let L € NSPACE(S(n)), and M be an NTM
requiring O(S(n)) space to decide L. We'll show that
there’s aTM N requiring O(S(n)?) space to decide L.

 On input x, N checks if there’s a path from C__, . to
Ciccepr IN Gy as follows: Let [x| = n.

Savitch’s theorem

NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof. (contd.) N computes m = O(S(n)), the no. of
bits required to represent a configuration of M. It also
finds out C, .. and C, ... Then N checks if there’s a
path from C .. to C, ... of length at most 2™ in Gy,
recursively using the following procedure.

C,, C,, i) :returns | if there’s a path from C,
to C, of length at most 2'in Gy ,; 0 otherwise.

Savitch’s theorem

° NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

Space constructibility of S(n) used here

\
e Proof. (contd.)'N computes m = O(S(n))\, the no. of

bits required to represent a configuration of M. It also
finds out C, .. and C, ... Then N checks if there’s a
path from C .. to C, ... of length at most 2™ in Gy,
recursively using the following procedure.

o C,, C,, i) :returns | if there’s a path from C,
to C, of length at most 2'in Gy ,; 0 otherwise.

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
¢ Cp, Cyi) {
If i = 0 check if C, and C, are adjacent.
Else, for every configurations C,
a, = C,GC,i-l
a, = G C,,i-l

ifa,=| &a,=I,return |.Else return 0.

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Require O(S(n)) space

® C|, Cz, | {
If i = 0 check if , are adjacent.

Else, for every configurations C,
a, = C,GC,i-l
a, = G C,,i-l

ifa,=| &a,=I,return |.Else return 0.

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
® C|, Cz, | {
If i = 0 check if C, and C, are adjacent.

Else, for every configurations C,

a, = C,GC,i-l
] Reuse space
a, = G C,,i-l

ifa,=| &a,=I,return |.Else return 0.

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
o Space complexity: O(S(n)?)

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
o Space complexity: O(S(n)?)

Time(i) = 2™.2.Time(i-1) + O(S(n))
» Time complexity: 206"

Savitch’s theorem

o Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
o Space complexity: O(S(n)?)

Time(i) = 2™.2.Time(i-1) + O(S(n))
» Time complexity: 206M)

Recall, NSPACE(S(n)) < DTIME(2°6M),
There’s an algorithm with time complexity
206M), but higher space requirement.

PSPACE-completeness

PSPACE-completeness

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e Is P = PSPACE ?

PSPACE-completeness

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

* Is P = PSPACE ? ...use poly-time Karp reduction!

° A language L is PSPACE-hard if for every L
in PSPACE, L SP ’. Further,if L' is in PSPACE then U
is PSPACE-complete.

A PSPACE-complete problem

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

* Is P = PSPACE ? ...use poly-time Karp reduction!

° L = {(M,w,|™) : M accepts w using m space}

Natural PSPACE-complete problem

o A quantified Boolean formula (QBF) is a
formula of the form

Qx; Qxy ... Qux, (X, Xy, ..., X))

\

|

Quantifiers 3 or V Just a formula on
Boolean variables

* A QBF is either true or false as all variables are
quantified. This is unlike a formula we’ve seen before
where variables were unquantified/free.

Natural PSPACE-complete problem

e Example. Ix; Ix, ... A%, ¢(X;, Xy, ..., X,)
e The above QBF is true iff ¢ is satisfiable.

* We could have defined SAT as
SAT = {Ix ¢(x) : ¢ is a CNF and Ix §(x) is true}

instead of
SAT = {¢(x) : ¢ is a CNF and ¢ is satisfiable}

Natural PSPACE-complete problem

o A quantified Boolean formula (QBF) is a
formula of the form

Qx; Qxy ... Qux, (X, Xy, ..., X))

\

|

Quantifiers 3 or V Just a formula on
Boolean variables

° By using auxiliary variables (as in the
proof of Cook-Levin) and introducing some more 3
quantifiers at the end, we can assume w.l.o.g. that ¢ is

a 3CNF,

Natural PSPACE-complete problem

° TQBF is the set of true quantified
Boolean formulas.

o TQBF is PSPACE-complete.

* Proof: Easy to see that TOBF is in PSPACE — just
think of a suitable recursive procedure. We'll now
show that every L € PSPACE reduces to TQBF via
poly-time Karp reduction...

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

X €L lf—quX is a true QBF

Size of Y, must be bounded
by poly(n), where |x| = n

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

X €L lf—quX is a true QBF

Form W, in such a way that W_ is true iff there’s a path from
Cape to C in Gy,

accept

Natural PSPACE-complete problem

° TQBF is the set of true quantified
Boolean formulas.

o TQBF is PSPACE-complete.

* Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in Gy ,.

Natural PSPACE-complete problem

° TQBF is the set of true quantified
Boolean formulas.

o TQBF is PSPACE-complete.

* Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in Gy,. Then, it forms a semi-QBF
A(C,,C,), such that A (C,,C,) is true iff there’s a path
from C, to C, of length at most 2' in G ,..

Natural PSPACE-complete problem

° TQBF is the set of true quantified
Boolean formulas.

o TQBF is PSPACE-complete.

* Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in Gy,. Then, it forms a semi-QBF
A(C,,C,), such that A (C,,C,) is true iff there’s a path
from C, to C, of length at most 2" in Gy ,..

The variables corresponding to the bits of C,
and C, are unquantified/free variables of A,

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) QBF A(C,,C,) is formed, recursively, as
follows:

A(C,,Cy) =3C (A,(C,,.C) AAL(C,Cy)

Issue: Size of A is twice the size of A | !!

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) QBF A(C,,C,) is formed, recursively, as
follows:

A(C,,C,) = 3C vD,VD,

((0=cAD,=C)v(D,=CAD,=C)) = A,(D,D))

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) QBF A(C,,C,) is formed, recursively, as
follows:

A(C,,C,) = 3C vD,vD,
(_'((DI =C,AD,=C)v(D,=CAD,=GC)) vV A (DD,)

Note: Size of A, = O(S(n)) + Size of A

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,

LIJ m(Cstart’ accept)

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,

LIJ m(Cstart’ accept)

» But, we need to specify how to form A,(C,,C,).
» Size of Y, = O(S(n)?) + Size of A,

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,

LIJ m(Cstart’ accept)

» But, we need to specify how to form A,(C,,C,).
» Size of Y, = O(S(n)?) + Size of A,

Remarl: We can easily bring all the quantifiers at the
beginning in W, (as in prenex normal form).

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,

LIJ m(Cstart’ accept)

» But, we need to specify how to form A,(C,,C,).
e Size of W, = O(S(n)?) +@—> 2

Adjacent configurations

o There’s an O(S(n)?)-size circuit ¢y, on O(S(n))
inputs such that for every inputs C, and G,
dmx(C), Cy) = | iff C; and C, encode two neighboring
configurations in Gy, .

e Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C, and C, it
checks if C, is a neighbor of C, in Gy,.

Adjacent configurations

o There’s an O(S(n)?)-size circuit ¢y, on O(S(n))
inputs such that for every inputs C, and G,
dmx(C), Cy) = | iff C; and C, encode two neighboring
configurations in Gy, .

e Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C, and C, it
checks if C, is a neighbor of C, in Gy ,. Applying ideas
from the proof of Cook-Levin theorem, we get our
desired ¢y, of size O(S(n)?).

Size of A,

° We can convert the circuit ¢y, (C;, C,) to a
quantified CNF A,(C,,C,) by introducing auxiliary
variables (as in the proof of Cook-Levin theorem).

» Hence, size of Ay(C,,C,) is O(S(n)?).
 Therefore, size of Y, = O(S(n)?).

Other PSPACE complete problems

e Checking if a player has a winning strategy in certain

two-player games, like (generalized) Hex, Reversi,
Geography etc.

* Integer circuit evaluation ().
o Implicit graph reachability.

e Check the wiki page:
https://en.wikipedia.org/wiki/List_of PSPACE-
complete_problems

