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Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  
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space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in DSPACE(S(n)) if there’s a TM M that decides L 
using O(S(n)) work space on inputs of length n. 



Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in NSPACE(S(n)) if there’s a NTM M that decides L 
using O(S(n)) work space on inputs of length n, 
regardless of M’s nondeterministic choices.  



Space bounded computation 

 We’ll refer to ‘work space’ as ‘space’. For convenience, 
assume there’s a single work tape.  

 If the output has many bits, then we will assume that 
the TM has a separate write-only output tape. 



Space bounded computation 

 We’ll refer to ‘work space’ as ‘space’. For convenience, 
assume there’s a single work tape.  

 If the output has many bits, then we will assume that 
the TM has a separate write-only output tape. 

 

 Definition. Let S:  be a function. S is space 
constructible if S(n) ≥ log n and there’s a TM that 
computes S(|x|) from x using O(S(|x|)) space. 

 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

Hopcroft, Paul & Valiant  1977  



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 Proof. Uses the notion of configuration graph of a TM. 
We’ll see this shortly. 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 

Giving space at least log n gives a 
TM at least the power to 
remember the index of a cell. 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP 

                          

Run through all certificate 
choices of the verifier and 
reuse space.  



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP 

                          

Follows from the above theorem 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 
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Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 

Homework:  Integer addition and 
multiplication are in (functional) L. 
 
Integer division is also in (functional) 
L.   (Chiu, Davida & Litow 2001) 



Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 



Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 

Input head 
index 

Work tape 
head index 

bS(n) State info 

Content of work tape A Configuration C 

b1 … 



Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 

Input head 
index 

Work tape 
head index 

bS(n) State info b1 … 

Note:   A configuration C can be represented using O(S(n)) 
bits if M uses S(n) = 𝞨(log n) space on n-bit inputs. 



Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

            



Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 Number of nodes in GM,x = 2O(S(n)), if M uses S(n) 
space on n-bit inputs 

            



Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 If M is a DTM then every node C in GM,x has at most 
one outgoing edge. If M is an NTM then every node C 
in GM,x has at most two outgoing edges.   

            



Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

            
C1 

C2 
C2 

C1 

C3 

δ1 δ1 

δ0 

Conf. graph of a DTM 
Conf. graph of an NTM 

… … 

… 



Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 By erasing the contents of the work tape at the end, 
bringing the head at the beginning, and having a qaccept 
state, we can assume that there’s a unique Caccept 
configuration. Configuration Cstart is well defined.        



Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 M accepts x if and only if there’s a path from Cstart to 
Caccept in GM,x.        



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Proof. Let L ∈ NSPACE(S(n)) and M be an NTM 
deciding L using O(S(n)) space on length n inputs.  

 On input x, compute the configuration graph GM,x of 
M and check if there’s a path from Cstart to Caccept . 
Running time is 2O(S(n)). 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 
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PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

 Proof. Count the no. of vertices in G, let it be n. Set 
aside two memory locations of log n bits each. 
Initialize a counter, say Count = n. 

Initialize to s Count = n 

log n log n 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

 Proof. Count the no. of vertices in G, let it be n. Set 
aside two memory locations of log n bits each. 
Initialize a counter, say Count = n. 

Initialize to s Count = n Guess a vertex v1 

If there’s a edge from s to 
v1, decrease count by 1. 
Else o/p 0 and stop. 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

 Proof. Count the no. of vertices in G, let it be n. Set 
aside two memory locations of log n bits each. 
Initialize a counter, say Count = n. 

Set to v1 Count = n-1 Guess a vertex v2 

If there’s a edge from v1 to 
v2, decrease count by 1. 
Else o/p 0 and stop. 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

 Proof. Count the no. of vertices in G, let it be n. Set 
aside two memory locations of log n bits each. 
Initialize a counter, say Count = n. 

Set to v2 Count = n-2 Guess a vertex v3 

If there’s a edge from v2 to 
v3, decrease count by 1. 
Else o/p 0 and stop. 

…and so on. 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

 Proof. Count the no. of vertices in G, let it be n. Set 
aside two memory locations of log n bits each. 
Initialize a counter, say Count = n. 

Set to vn-1 Count = 1 Set to t 

If there’s a edge from vn-1 
to t, o/p 1 and stop.      
Else o/p 0 and stop. 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

 Proof. Count the no. of vertices in G, let it be n. Set 
aside two memory locations of log n bits each. 
Initialize a counter, say Count = n. 

Set to vn-1 Count = 1 Set to t 

If there’s a edge from vn-1 
to t, o/p 1 and stop.      
Else o/p 0 and stop. Space complexity = O(log n) 



UPATH:  A problem in L 

 UPATH = {(G,s,t) : G is an undirected graph having a 
path from s to t}. 

 Theorem (Reingold 2005).  UPATH is in L. 
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UPATH:  A problem in L 

 UPATH = {(G,s,t) : G is an undirected graph having a 
path from s to t}. 

 Theorem (Reingold 2005).  UPATH is in L. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 
UPATH 

Is PATH in L ?  
   If yes, then L = NL ! 

   (will prove later) 



Space Hierarchy Theorem 

 Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g 
are space-constructible functions and f(n) = o(g(n)), 
then SPACE(f(n)) ⊊ SPACE(g(n)). 

 

 Proof.  Homework.  

 

 

 Theorem.  L ⊊ PSPACE. 



PSPACE = NPSPACE 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof. Let L ∈ NSPACE(S(n)), and M be an NTM 
requiring O(S(n)) space to decide L. We’ll show that 
there’s a TM N requiring O(S(n)2) space to decide L.  



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof. Let L ∈ NSPACE(S(n)), and M be an NTM 
requiring O(S(n)) space to decide L. We’ll show that 
there’s a TM N requiring O(S(n)2) space to decide L.  

 

 On input x, N checks if there’s a path from Cstart to 
Caccept in GM,x as follows:  Let |x| = n. 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof. (contd.) N computes m = O(S(n)), the no. of 
bits required to represent a configuration of M. It also 
finds out Cstart and Caccept. Then N checks if there’s a 
path from Cstart to Caccept of length at most 2m in GM,x 

recursively using the following procedure. 

 

 REACH(C1, C2, i) : returns 1 if there’s a path from C1 
to C2 of length at most 2i in GM,x;   0 otherwise. 

 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof. (contd.) N computes m = O(S(n)), the no. of 
bits required to represent a configuration of M. It also 
finds out Cstart and Caccept. Then N checks if there’s a 
path from Cstart to Caccept of length at most 2m in GM,x 

recursively using the following procedure. 

 

 REACH(C1, C2, i) : returns 1 if there’s a path from C1 
to C2 of length at most 2i in GM,x;   0 otherwise. 

 

Space constructibility of S(n) used here 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

 REACH(C1, C2, i) {  

        If i = 0 check if C1 and C2 are adjacent. 

        Else,   for every configurations C,  

                       a1 = REACH(C1, C, i-1) 

                       a2 = REACH(C, C2, i-1) 

                       if a1=1 & a2=1, return 1. Else return 0.  

   } 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

 REACH(C1, C2, i) {  

        If i = 0 check if C1 and C2 are adjacent. 

        Else,   for every configurations C,  

                       a1 = REACH(C1, C, i-1) 

                       a2 = REACH(C, C2, i-1) 

                       if a1=1 & a2=1, return 1. Else return 0.  

   } 

Require O(S(n)) space 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

 REACH(C1, C2, i) {  

        If i = 0 check if C1 and C2 are adjacent. 

        Else,   for every configurations C,  

                       a1 = REACH(C1, C, i-1) 

                       a2 = REACH(C, C2, i-1) 

                       if a1=1 & a2=1, return 1. Else return 0.  

   } 

Reuse space 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

                   Space(i) = Space(i-1) + O(S(n)) 

 Space complexity:  O(S(n)2) 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

                   Space(i) = Space(i-1) + O(S(n)) 

 Space complexity:  O(S(n)2)  

 

                   Time(i) = 2m.2.Time(i-1) + O(S(n)) 

 Time complexity:  2O(S(n)  )  

 

 

2 



Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

                   Space(i) = Space(i-1) + O(S(n)) 

 Space complexity:  O(S(n)2)  

 

                   Time(i) = 2m.2.Time(i-1) + O(S(n)) 

 Time complexity:  2O(S(n)  )  

 

 

2 

Recall, NSPACE(S(n)) ⊆ DTIME(2O(S(n))). 
There’s an algorithm with time complexity 
2O(S(n)), but higher space requirement. 



PSPACE-completeness 



PSPACE-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ?  



PSPACE-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is PSPACE-hard if for every L 
in PSPACE,  L  ≤p  L’.  Further, if L’ is in PSPACE then L’ 
is PSPACE-complete. 

 



A PSPACE-complete problem 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ? …use poly-time Karp reduction! 

 

 Example. L’ = {(M,w,1m) : M accepts w using m space} 

 



Natural PSPACE-complete problem 

 Definition. A quantified Boolean formula (QBF) is a 
formula of the form 

       Q1x1 Q2x2 … Qnxn  ϕ(x1, x2, …, xn) 

 

 

 

 A QBF is either true or false as all variables are 
quantified. This is unlike a formula we’ve seen before 
where variables were unquantified/free. 

 

Quantifiers ∃ or ∀ Just a formula on 
Boolean variables  



Natural PSPACE-complete problem 

 Example.   ∃x1 ∃x2 … ∃xn  ϕ(x1, x2, …, xn) 

 

 The above QBF is true iff ϕ is satisfiable. 

 

 We could have defined SAT as  

        SAT = {∃x ϕ(x) : ϕ is a CNF and ∃x ϕ(x) is true} 

  instead of 

       SAT = {ϕ(x) : ϕ is a CNF and ϕ is satisfiable} 

 



Natural PSPACE-complete problem 

 Definition. A quantified Boolean formula (QBF) is a 
formula of the form 

       Q1x1 Q2x2 … Qnxn  ϕ(x1, x2, …, xn) 

 

 

 

 Homework:  By using auxiliary variables (as in the 
proof of Cook-Levin) and introducing some more ∃ 
quantifiers at the end, we can assume w.l.o.g. that ϕ is 
a 3CNF.  

 

 

Quantifiers ∃ or ∀ Just a formula on 
Boolean variables  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof:  Easy to see that TQBF is in PSPACE – just 
think of a suitable recursive procedure. We’ll now 
show that every L ∈ PSPACE reduces to TQBF via 
poly-time Karp reduction… 

 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Let M be a TM deciding L using S(n) = 
poly(n) space. We intend to come up with a poly-time 
reduction f s.t.  

             x ∈ L             ψx is a true QBF 
f 

Size of ψx must be bounded 
by poly(n), where |x| = n  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Let M be a TM deciding L using S(n) = 
poly(n) space. We intend to come up with a poly-time 
reduction f s.t.  

             x ∈ L             ψx is a true QBF 

 

Idea: Form ψx in such a way that ψx is true iff there’s a path from 
Cstart to Caccept in GM,x. 

f 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x.  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x. Then, it forms a semi-QBF 
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path 
from C1 to C2 of length at most 2i in GM,x.   



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x. Then, it forms a semi-QBF 
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path 
from C1 to C2 of length at most 2i in GM,x.   

The variables corresponding to the bits of C1 
and C2 are unquantified/free variables of Δi 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:      

                             (first attempt) 

        Δi(C1,C2) = ∃C  (Δi-1(C1,C) ∧ Δi-1(C,C2)) 
Issue:  Size of Δi is twice the size of Δi-1 !! 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:    

                         (careful attempt) 

  Δi(C1,C2) = ∃C ∀D1∀D2   

   ( ((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2))       Δi-1(D1,D2)  ) 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:    

                         (careful attempt) 

  Δi(C1,C2) = ∃C ∀D1∀D2   

   (¬((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2))  ∨   Δi-1(D1,D2)  ) 

Note:   Size of Δi  =  O(S(n)) + Size of Δi-1  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

                      



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      Remark:  We can easily bring all the quantifiers at the 
beginning in ψx (as in prenex normal form).  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      

?? 



Adjacent configurations   

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n)) 
inputs such that for every inputs C1 and C2,      
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring 
configurations in GM,x . 

 

 Proof. Think of a linear time algorithm that has the 
knowledge of M and x, and on input C1 and C2 it 
checks if C2 is a neighbor of C1 in GM,x.  



Adjacent configurations 

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n)) 
inputs such that for every inputs C1 and C2,      
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring 
configurations in GM,x . 

 

 Proof. Think of a linear time algorithm that has the 
knowledge of M and x, and on input C1 and C2 it 
checks if C2 is a neighbor of C1 in GM,x. Applying ideas 
from the proof of Cook-Levin theorem, we get our 
desired ϕM,x of size O(S(n)2). 



Size of Δ0 

 Obs. We can convert the circuit ϕM,x(C1, C2) to a 
quantified CNF Δ0(C1,C2) by introducing auxiliary 
variables (as in the proof of Cook-Levin theorem).  

 

 Hence, size of Δ0(C1,C2) is O(S(n)2). 

 Therefore, size of ψx  = O(S(n)2). 

 



Other PSPACE complete problems 

 Checking if a player has a winning strategy in certain 
two-player games, like (generalized) Hex, Reversi, 
Geography etc.  

 

 Integer circuit evaluation (Yang 2000). 

 

 Implicit graph reachability. 

 

 Check the wiki page: 
https://en.wikipedia.org/wiki/List_of_PSPACE-
complete_problems 


