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NL-completeness 

 Recall again, to define completeness of a complexity 
class, we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is L = NL ?  



NL-completeness 

 Recall again, to define completeness of a complexity 
class, we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is L = NL ? …poly-time (Karp) reductions are much 
too powerful for L.  

 We need to define a suitable ‘log-space’ reduction. 



Log-space reductions 

                     x                  f(x) 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 

Log-space TM 

…unless we restrict |f(x)| =  O(log |x|), in which case 
we’re severely restricting the power of the reduction.  



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Definition:  A function f : {0,1}*    {0,1}* is implicitly log-
space computable if 

          1. |f(x)| ≤ |x|c for some constant c,  

          2. The following two languages are in L :  

 

Log-space TM 

Lf = {(x, i) : f(x)i = 1}   and  L’f = {(x, i) : i ≤ |f(x)|} 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Definition:  A language L1 is log-space reducible to a 
language L2, denoted L1 ≤l L2, if there’s an implicitly 
log-space computable function f such that 

                     x ∈ L1              f(x) ∈ L2 

           

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof:  Let f be the reduction from L1 to L2, and g the 
reduction from L2 to L3. We’ll show that the function 
h(x) = g(f(x)) is implicitly log-space computable which 
will suffice as, 

                      

Log-space TM 

x ∈ L1           f(x) ∈ L2          g(f(x)) ∈ L3 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …Think of the following log-space TM that 
computes h(x)i from (x, i). Let 

                      

Log-space TM 

  Mf be the log-space TM that computes f(x)j from (x, j), 
 

  Mg be the log-space TM that computes g(y)i from (y, i). 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).   

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  Space usage = O(log |f(x)|) + O(log |x|).  

Log-space TM 

stores Mg’s current configuration 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  Space usage = O(log |x|).  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  This shows Lh is in L.  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …Similarly, L’h is in L and so h is implicitly log-
space computable.  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ∈ L then L1 ∈ L. 

 Proof:  Same ideas. (Homework) 

Log-space TM 



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     

 Theorem:  PATH is NL-complete. 

 Proof:  We’ve already shown that PATH ∈ NL. Now 
we’ll show that for every L ∈ NL,  L ≤l PATH.  We 
need to come up with an implicitly log-space 
computable function f s.t.  

                   x ∈ L              f(x) ∈ PATH 

 

PATH = {(G,s,t) : G is a digraph having a path from s to t}. 



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     

 Theorem:  PATH is NL-complete. 

 Proof: (contd.) Let M be a log-space NTM deciding L. 
Define, f(x) = (GM,x, Cstart, Caccept), where GM,x is given 
as an adjacency matrix.  

PATH = {(G,s,t) : G is a digraph having a path from s to t}. 



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     

 Theorem:  PATH is NL-complete. 

 Proof: (contd.) Let M be a log-space NTM deciding L. 
Define, f(x) = (GM,x, Cstart, Caccept), where GM,x is given 
as an adjacency matrix. Let m = O(log |x|) be the no. 
of bits required to represent a configuration. Then,      
|f(x)| = 22m + 2m = poly(|x|). 

PATH = {(G,s,t) : G is a digraph having a path from s to t}. 



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     

 Theorem:  PATH is NL-complete. 

 Proof: (contd.) Let’s see how to compute f(x)i from (x, 
i) using log-space:    

PATH = {(G,s,t) : G is a digraph having a path from s to t}. 

f(x) GM,x Cstart Caccept 

22m bits 

If i > 22m then i indexes a bit in the (Cstart, Caccept) part of f(x); so 
f(x)i can be computed by simply writing down Cstart and Caccept.  



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     

 Theorem:  PATH is NL-complete. 

 Proof: (contd.) Let’s see how to compute f(x)i from (x, 
i) using log-space:    

PATH = {(G,s,t) : G is a digraph having a path from s to t}. 

f(x) GM,x Cstart Caccept 

22m bits 

If i ≤ 22m then write i as (C1,C2), where C1 and C2 are m bits each, 
and check if C2 is a neighbor of C1 in GM,x. This takes O(m) space. 



NL-completeness 

 Definition:  A language L is NL-complete if L ∈ NL and 
for every L’ ∈ NL, L’ is log-space reducible to L. 

 

     

 Theorem:  PATH is NL-complete. 

 Proof: (contd.) Thus, we’ve argued that |f(x)| has 
poly(|x|) length and Lf ∈ L. Similarly, L’f ∈ L. So, f 
defines a log-space reduction from L to PATH.  

PATH = {(G,s,t) : G is a digraph having a path from s to t}. 



Other NL-complete problems 

 

 Reachability in directed acyclic graphs. 

 

 Checking if a directed graph is strongly connected. 

 

 2SAT. 

 

 Determining if a word is accepted by a NFA. 



An alternate characterization of NL 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

     



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition.(first attempt) Suppose L is a language, and 
there’s a log-space verifier M & a function q s.t. 

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1 

     
Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ? 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition.(first attempt) Suppose L is a language, and 
there’s a log-space verifier M & a function q s.t. 

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1 

     
Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ? 
                           …No, that’s too restrictive. That will imply L ∈ L. 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition.(first attempt) Suppose L is a language, and 
there’s a log-space verifier M & a poly-function q s.t. 

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1 

     
Is it so that L ∈ NL iff L has such a log-space verifier of the above kind?  



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition.(first attempt) Suppose L is a language, and 
there’s a log-space verifier M & a poly-function q s.t. 

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1 

     
Is it so that L ∈ NL iff L has such a log-space verifier of the above kind?  
Unfortunately not!!   Exercise:  L ∈ NP iff L has such a log-space verifier. 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition.(first attempt) Suppose L is a language, and 
there’s a log-space verifier M & a poly-function q s.t. 

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1 

     
Solution:  Make the certificate read-one as described next… 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition. A tape is called a read-one tape if the head 
moves from left to right and never turns back. 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Definition. A language L has read-once certificates if 
there’s a log-space verifier M & a poly-function q s.t. 

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1, 

   where u is given on a read-once input tape of M. 

     



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Theorem. L ∈ NL iff L has read-once certificates. 

 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Theorem. L ∈ NL iff L has read-once certificates. 

 Proof. Suppose L ∈ NL. Let N be an NTM that 
decides L. Think of a verifier M that on input (x, u) 
simulates N on input x by using u as the 
nondeterministic choices of N. Clearly |u| = poly(|x|)...  



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Theorem. L ∈ NL iff L has read-once certificates. 

 Proof. (contd.) …as GN,x has poly(|x|) configurations. 
M scans u from left to right without moving its head 
backward. So, u is a read-once certificate satisfying, 

         x ∈ L           ∃u ∈ {0,1}poly(|x|) s.t. M(x,u) = 1  



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Theorem. L ∈ NL iff L has read-once certificates. 

 Proof. (contd.) Suppose L has read-once certificates, 
and M be a log-space verifier s.t.  

         x ∈ L           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1. 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Theorem. L ∈ NL iff L has read-once certificates. 

 Proof. (contd.) Now, think of an NTM N that on input 
x starts simulating M. It guesses the bits of u as and 
when required during the simulation. As u is read-
once for M, there’s no need for N to store u. 



Certificate definition of NL 

 Like NP, it will be useful to have a certificate-verifier 
kind of definition of the class NL.  

 We’ll see how it helps in proving NL = co-NL i.e., in 
showing PATH ∈ NL. 

   PATH = {(G,s,t): G is a digraph with no path from s to t} 

 

 Theorem. L ∈ NL iff L has read-once certificates. 

 Proof. (contd.) So, N is a log-space NTM deciding L. 



NL = co-NL 



Class co-NL 

 Definition.  A language L is in co-NL if  L ∈ NL.  L is 
co-NL complete if L ∈ co-NL and for every L’ ∈ co-NL, 
L’ is log-space reducible to L. 

 

   PATH = {(G,s,t):  G is a digraph with no path from s to t} 

 Obs. PATH is co-NL complete under log-space 
reduction. 



Class co-NL 

 Definition.  A language L is in co-NL if  L ∈ NL.  L is 
co-NL complete if L ∈ co-NL and for every L’ ∈ co-NL, 
L’ is log-space reducible to L. 

 

   PATH = {(G,s,t):  G is a digraph with no path from s to t} 

 Obs. PATH is co-NL complete under log-space 
reduction. 

 

 Obs. If a language L’ log-space reduces to a language in 
NL then L’ ∈ NL. (Homework)  So, if PATH ∈ NL then 
NL = co-NL. 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. It is sufficient to show that there’s a log-space 
verifier M & a poly-function q s.t. 

      x ∈ PATH           ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1, 

   where u is given on a read-once input tape of M. 

 

 Let us focus on forming a read-once certificate u that 
convinces a verifier that there’s no path from s to t… 

 

      



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. x = (G,s,t). Let m be the number of nodes in G. 

   Let ki = no. of nodes reachable from s by a path of 

   length at most i in G. 

Path of 
length ≤ i 

s 
r 

ki nodes 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. x = (G,s,t). Let m be the number of nodes in G. 

   Let ki = no. of nodes reachable from s by a path of 

   length at most i in G. 

  Read-once certificate u is of the form (u1, u2, …, um, v), 

  where ui’s and v are strings s.t.  

     (1)  reading until (u1, u2, …ui) in a read-once fashion, M knows 

            correctly the value of ki. 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. x = (G,s,t). Let m be the number of nodes in G. 

   Let ki = no. of nodes reachable from s by a path of 

   length at most i in G. 

  Read-once certificate u is of the form (u1, u2, …, um, v), 

  where ui’s and v are strings s.t.  

     (1)  reading until (u1, u2, …ui) in a read-once fashion, M knows 

            correctly the value of ki. So, after reading (u1, u2, …um), M 

            knows km, the number of nodes reachable from s.  



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. x = (G,s,t). Let m be the number of nodes in G. 

   Let ki = no. of nodes reachable from s by a path of 

   length at most i in G. 

  Read-once certificate u is of the form (u1, u2, …, um, v),  

  where ui’s and v are strings s.t.  

     (1)  reading until (u1, u2, …ui) in a read-once fashion, M knows 

            correctly the value of ki. So, after reading (u1, u2, …um), M 

            knows km, the number of nodes reachable from s. 

      (2)  v then convinces M (which already knows km) that t is 

            not one of the km vertices reachable from s. 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

The claimed value of ki. 
O(log m) bits required. 

… 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

Index of a vertex.  
O(log m) bits required. 

… 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

Indicator bit that 
indicates if r1 is 
reachable from s by a 
path of length ≤ i 

… 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

If indicator bit is 1 then 
give a path from s to r1 of 
length ≤ i.  O(m log m) 
bits required for this. 

… 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

If indicator bit is 0 then 
give a certificate for 
absence of paths from s to 
r2 of length ≤ i.  (how?) 

… 
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 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

If indicator bit is 0 then 
give a certificate for 
absence of paths from s to 
r2 of length ≤ i.  (how?) 

… 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

If indicator bit is 0 then 
give a certificate for 
absence of paths from s to 
r2 of length ≤ i.  (how?) 

If such certificates 
can be given using 
poly(m) bits then    
|ui| = poly(m) 

… 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. We’ll design ui assuming that u1, …, ui-1 have 
already been constructed and M knows ki-1. Let r1, 
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then, 

 

 

 

 While reading ui, M’s work tape remembers the 
following info:     

                       1. ki-1 and k, 

                       2. the last read index of a vertex rj 

k r1 r2 rm 1 0 1 
path of length  

≤ i from s to r1 

No path of 

length ≤ i  
from s to r2 

path of length  

≤ i from s to rm 

ui looks like: 

… 
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The moment M encounters a new vertex index r, it 
checks immediately if r > rj. This ensures that M is not 

fooled by repeating info about the same vertex in ui. 
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While reading ui, M keeps a count of the number of indicator 
bits that are 1 and finally checks if this number is k. 
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This part of the 
certificate is easy 
to give and verify 

?? 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.   

 

 
r2 0 

No path of 

length ≤ i  
from s to r2 

… … ui 

… q1 
path of length  

≤ i-1 from s to q1 

path of length  

≤ i-1 from s to qk’ 
qk’ 

q1 < q2 < … < qk’ 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.   

 

 
r2 0 

No path of 

length ≤ i  
from s to r2 

… … ui 

… q1 
path of length  

≤ i-1 from s to q1 

path of length  

≤ i-1 from s to qk’ 
qk’ 

q1 < q2 < … < qk’ 
Easy to give and verify 



NL = co-NL 

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.  

 

 

 

 

 

 While reading the ‘No path…r2’ part of ui, M 
remembers the last qj read and checks that the next q 
> qj. This ensures M is not fooled by repeating q’s. 
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 For every j ∈ [1,ki-1], after verifying the path of length 
≤ i-1 from s to qj, M checks that r2 is not adjacent to 
qj by looking at G’s adjacency matrix. 
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 At the end of reading the ‘No path…r2’ part, M 
checks that the number of q’s read is exactly ki-1. 
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 This convinces M that there is no path of length ≤ i 
from s to r2. Length of the ‘No path…r2’ part of ui is 
O(m2 log m). 
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 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL. 

 Proof. So, after reading (u1, …, um), the verifier M 
knows km, the number of vertices reachable from s. 

 

 The v part of the certificate u is similar to the ‘No 
path…r2’ part of ui described before. The details here 
are easy to fill in (homework). 

 

 We stress again that M is able to verify nonexistence 
of a path between s and t by reading u once from left 
to right and never moving its head backward. 
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 Hence, both PATH and  

           PATH ∈ NL ⊆ SPACE((log n)2) 

   by Savitch’s theorem. 


