
Computational Complexity Theory

Lecture 7: NL-completeness, NL = co-NL

Department of Computer Science,

Indian Institute of Science

NL-completeness

 Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is L = NL ?

NL-completeness

 Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is L = NL ? …poly-time (Karp) reductions are much
too powerful for L.

 We need to define a suitable ‘log-space’ reduction.

Log-space reductions

 x f(x)

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

Log-space TM

…unless we restrict |f(x)| = O(log |x|), in which case
we’re severely restricting the power of the reduction.

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Definition: A function f : {0,1}* {0,1}* is implicitly log-
space computable if

 1. |f(x)| ≤ |x|c for some constant c,

 2. The following two languages are in L :

Log-space TM

Lf = {(x, i) : f(x)i = 1} and L’f = {(x, i) : i ≤ |f(x)|}

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Definition: A language L1 is log-space reducible to a
language L2, denoted L1 ≤l L2, if there’s an implicitly
log-space computable function f such that

 x ∈ L1 f(x) ∈ L2

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: Let f be the reduction from L1 to L2, and g the
reduction from L2 to L3. We’ll show that the function
h(x) = g(f(x)) is implicitly log-space computable which
will suffice as,

Log-space TM

x ∈ L1 f(x) ∈ L2 g(f(x)) ∈ L3

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …Think of the following log-space TM that
computes h(x)i from (x, i). Let

Log-space TM

 Mf be the log-space TM that computes f(x)j from (x, j),

 Mg be the log-space TM that computes g(y)i from (y, i).

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). Space usage = O(log |f(x)|) + O(log |x|).

Log-space TM

stores Mg’s current configuration

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). Space usage = O(log |x|).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). This shows Lh is in L.

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …Similarly, L’h is in L and so h is implicitly log-
space computable.

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ∈ L then L1 ∈ L.

 Proof: Same ideas. (Homework)

Log-space TM

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

 Theorem: PATH is NL-complete.

 Proof: We’ve already shown that PATH ∈ NL. Now
we’ll show that for every L ∈ NL, L ≤l PATH. We
need to come up with an implicitly log-space
computable function f s.t.

 x ∈ L f(x) ∈ PATH

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

 Theorem: PATH is NL-complete.

 Proof: (contd.) Let M be a log-space NTM deciding L.
Define, f(x) = (GM,x, Cstart, Caccept), where GM,x is given
as an adjacency matrix.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

 Theorem: PATH is NL-complete.

 Proof: (contd.) Let M be a log-space NTM deciding L.
Define, f(x) = (GM,x, Cstart, Caccept), where GM,x is given
as an adjacency matrix. Let m = O(log |x|) be the no.
of bits required to represent a configuration. Then,
|f(x)| = 22m + 2m = poly(|x|).

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

 Theorem: PATH is NL-complete.

 Proof: (contd.) Let’s see how to compute f(x)i from (x,
i) using log-space:

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

f(x) GM,x Cstart Caccept

22m bits

If i > 22m then i indexes a bit in the (Cstart, Caccept) part of f(x); so
f(x)i can be computed by simply writing down Cstart and Caccept.

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

 Theorem: PATH is NL-complete.

 Proof: (contd.) Let’s see how to compute f(x)i from (x,
i) using log-space:

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

f(x) GM,x Cstart Caccept

22m bits

If i ≤ 22m then write i as (C1,C2), where C1 and C2 are m bits each,
and check if C2 is a neighbor of C1 in GM,x. This takes O(m) space.

NL-completeness

 Definition: A language L is NL-complete if L ∈ NL and
for every L’ ∈ NL, L’ is log-space reducible to L.

 Theorem: PATH is NL-complete.

 Proof: (contd.) Thus, we’ve argued that |f(x)| has
poly(|x|) length and Lf ∈ L. Similarly, L’f ∈ L. So, f
defines a log-space reduction from L to PATH.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

Other NL-complete problems

 Reachability in directed acyclic graphs.

 Checking if a directed graph is strongly connected.

 2SAT.

 Determining if a word is accepted by a NFA.

An alternate characterization of NL

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition.(first attempt) Suppose L is a language, and
there’s a log-space verifier M & a function q s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1

Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ?

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition.(first attempt) Suppose L is a language, and
there’s a log-space verifier M & a function q s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1

Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ?
 …No, that’s too restrictive. That will imply L ∈ L.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition.(first attempt) Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1

Is it so that L ∈ NL iff L has such a log-space verifier of the above kind?

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition.(first attempt) Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1

Is it so that L ∈ NL iff L has such a log-space verifier of the above kind?
Unfortunately not!! Exercise: L ∈ NP iff L has such a log-space verifier.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition.(first attempt) Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1

Solution: Make the certificate read-one as described next…

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition. A tape is called a read-one tape if the head
moves from left to right and never turns back.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Definition. A language L has read-once certificates if
there’s a log-space verifier M & a poly-function q s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1,

 where u is given on a read-once input tape of M.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Theorem. L ∈ NL iff L has read-once certificates.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Theorem. L ∈ NL iff L has read-once certificates.

 Proof. Suppose L ∈ NL. Let N be an NTM that
decides L. Think of a verifier M that on input (x, u)
simulates N on input x by using u as the
nondeterministic choices of N. Clearly |u| = poly(|x|)...

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Theorem. L ∈ NL iff L has read-once certificates.

 Proof. (contd.) …as GN,x has poly(|x|) configurations.
M scans u from left to right without moving its head
backward. So, u is a read-once certificate satisfying,

 x ∈ L ∃u ∈ {0,1}poly(|x|) s.t. M(x,u) = 1

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Theorem. L ∈ NL iff L has read-once certificates.

 Proof. (contd.) Suppose L has read-once certificates,
and M be a log-space verifier s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Theorem. L ∈ NL iff L has read-once certificates.

 Proof. (contd.) Now, think of an NTM N that on input
x starts simulating M. It guesses the bits of u as and
when required during the simulation. As u is read-
once for M, there’s no need for N to store u.

Certificate definition of NL

 Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

 We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH ∈ NL.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Theorem. L ∈ NL iff L has read-once certificates.

 Proof. (contd.) So, N is a log-space NTM deciding L.

NL = co-NL

Class co-NL

 Definition. A language L is in co-NL if L ∈ NL. L is
co-NL complete if L ∈ co-NL and for every L’ ∈ co-NL,
L’ is log-space reducible to L.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Obs. PATH is co-NL complete under log-space
reduction.

Class co-NL

 Definition. A language L is in co-NL if L ∈ NL. L is
co-NL complete if L ∈ co-NL and for every L’ ∈ co-NL,
L’ is log-space reducible to L.

 PATH = {(G,s,t): G is a digraph with no path from s to t}

 Obs. PATH is co-NL complete under log-space
reduction.

 Obs. If a language L’ log-space reduces to a language in
NL then L’ ∈ NL. (Homework) So, if PATH ∈ NL then
NL = co-NL.

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. It is sufficient to show that there’s a log-space
verifier M & a poly-function q s.t.

 x ∈ PATH ∃u ∈ {0,1}q(|x|) s.t. M(x,u) = 1,

 where u is given on a read-once input tape of M.

 Let us focus on forming a read-once certificate u that
convinces a verifier that there’s no path from s to t…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. x = (G,s,t). Let m be the number of nodes in G.

 Let ki = no. of nodes reachable from s by a path of

 length at most i in G.

Path of
length ≤ i

s
r

ki nodes

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. x = (G,s,t). Let m be the number of nodes in G.

 Let ki = no. of nodes reachable from s by a path of

 length at most i in G.

 Read-once certificate u is of the form (u1, u2, …, um, v),

 where ui’s and v are strings s.t.

 (1) reading until (u1, u2, …ui) in a read-once fashion, M knows

 correctly the value of ki.

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. x = (G,s,t). Let m be the number of nodes in G.

 Let ki = no. of nodes reachable from s by a path of

 length at most i in G.

 Read-once certificate u is of the form (u1, u2, …, um, v),

 where ui’s and v are strings s.t.

 (1) reading until (u1, u2, …ui) in a read-once fashion, M knows

 correctly the value of ki. So, after reading (u1, u2, …um), M

 knows km, the number of nodes reachable from s.

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. x = (G,s,t). Let m be the number of nodes in G.

 Let ki = no. of nodes reachable from s by a path of

 length at most i in G.

 Read-once certificate u is of the form (u1, u2, …, um, v),

 where ui’s and v are strings s.t.

 (1) reading until (u1, u2, …ui) in a read-once fashion, M knows

 correctly the value of ki. So, after reading (u1, u2, …um), M

 knows km, the number of nodes reachable from s.

 (2) v then convinces M (which already knows km) that t is

 not one of the km vertices reachable from s.

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

The claimed value of ki.
O(log m) bits required.

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

Index of a vertex.
O(log m) bits required.

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

Indicator bit that
indicates if r1 is
reachable from s by a
path of length ≤ i

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

If indicator bit is 1 then
give a path from s to r1 of
length ≤ i. O(m log m)
bits required for this.

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

If indicator bit is 0 then
give a certificate for
absence of paths from s to
r2 of length ≤ i. (how?)

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

If indicator bit is 0 then
give a certificate for
absence of paths from s to
r2 of length ≤ i. (how?)

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

If indicator bit is 0 then
give a certificate for
absence of paths from s to
r2 of length ≤ i. (how?)

If such certificates
can be given using
poly(m) bits then
|ui| = poly(m)

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

 While reading ui, M’s work tape remembers the
following info:

 1. ki-1 and k,

 2. the last read index of a vertex rj

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

…

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

 While reading ui, M’s work tape remembers the
following info:

 1. ki-1 and k,

 2. the last read index of a vertex rj

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

…

The moment M encounters a new vertex index r, it
checks immediately if r > rj. This ensures that M is not

fooled by repeating info about the same vertex in ui.

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

 While reading ui, M’s work tape remembers the
following info:

 1. ki-1 and k,

 2. the last read index of a vertex rj

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

…

While reading ui, M keeps a count of the number of indicator
bits that are 1 and finally checks if this number is k.

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. We’ll design ui assuming that u1, …, ui-1 have
already been constructed and M knows ki-1. Let r1,
…rm be the nodes of G s.t. r1 < r2 < ….< rm. Then,

k r1 r2 rm 1 0 1
path of length

≤ i from s to r1

No path of

length ≤ i
from s to r2

path of length

≤ i from s to rm

ui looks like:

…

This part of the
certificate is easy
to give and verify

??

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.

r2 0

No path of

length ≤ i
from s to r2

… … ui

… q1
path of length

≤ i-1 from s to q1

path of length

≤ i-1 from s to qk’
qk’

q1 < q2 < … < qk’

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.

r2 0

No path of

length ≤ i
from s to r2

… … ui

… q1
path of length

≤ i-1 from s to q1

path of length

≤ i-1 from s to qk’
qk’

q1 < q2 < … < qk’
Easy to give and verify

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.

 While reading the ‘No path…r2’ part of ui, M
remembers the last qj read and checks that the next q
> qj. This ensures M is not fooled by repeating q’s.

r2 0
No path of

length ≤ i
from s to r2

… … ui

… q1
path of length

≤ i-1 from s to q1

path of length

≤ i-1 from s to qk’
qk’

q1 < q2 < … < qk’

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.

 For every j ∈ [1,ki-1], after verifying the path of length
≤ i-1 from s to qj, M checks that r2 is not adjacent to
qj by looking at G’s adjacency matrix.

r2 0
No path of

length ≤ i
from s to r2

… … ui

… q1
path of length

≤ i-1 from s to q1

path of length

≤ i-1 from s to qk’
qk’

q1 < q2 < … < qk’

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.

 At the end of reading the ‘No path…r2’ part, M
checks that the number of q’s read is exactly ki-1.

r2 0
No path of

length ≤ i
from s to r2

… … ui

… q1
path of length

≤ i-1 from s to q1

path of length

≤ i-1 from s to qk’
qk’

q1 < q2 < … < qk’

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. Recall, M knows ki-1 = k’ (say) while reading ui.

 This convinces M that there is no path of length ≤ i
from s to r2. Length of the ‘No path…r2’ part of ui is
O(m2 log m).

r2 0
No path of

length ≤ i
from s to r2

… … ui

… q1
path of length

≤ i-1 from s to q1

path of length

≤ i-1 from s to qk’
qk’

q1 < q2 < … < qk’

NL = co-NL

 Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

 Proof. So, after reading (u1, …, um), the verifier M
knows km, the number of vertices reachable from s.

 The v part of the certificate u is similar to the ‘No
path…r2’ part of ui described before. The details here
are easy to fill in (homework).

 We stress again that M is able to verify nonexistence
of a path between s and t by reading u once from left
to right and never moving its head backward.

NL = co-NL

 Hence, both PATH and

 PATH ∈ NL ⊆ SPACE((log n)2)

 by Savitch’s theorem.

