Computational Complexity Theory

Lecture 7: NL-completeness, NL = co-NL

Department of Computer Science, Indian Institute of Science

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
 Is L = NL ?

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL ? ...poly-time (Karp) reductions are much too powerful for L.
- We need to define a suitable <u>'log-space'</u> reduction.

Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

 $x \xrightarrow{\text{Log-space TM}} f(x)$

...unless we restrict $|f(x)| = O(\log |x|)$, in which case we're severely restricting the power of the reduction.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output $\underline{a \text{ bit}}$ of f(x).

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A function $f : \{0, I\}^* \rightarrow \{0, I\}^*$ is <u>implicitly log-space computable</u> if

 $||f(x)|| \leq |x|^c$ for some constant c,

2. The following two languages are in L :

 $L_f = \{(x, i) : f(x)_i = I\}$ and $L'_f = \{(x, i) : i \le |f(x)|\}$

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A language L_1 is <u>log-space reducible</u> to a language L_2 , denoted $L_1 \leq_l L_2$, if there's an implicitly log-space computable function f such that

 $x \in L_1 \quad \iff f(x) \in L_2$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• Proof: Let f be the reduction from L_1 to L_2 , and g the reduction from L_2 to L_3 . We'll show that the function h(x) = g(f(x)) is implicitly log-space computable which will suffice as,

 $x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Proof: ...Think of the following log-space TM that computes h(x)_i from (x, i). Let
 - > M_f be the log-space TM that computes $f(x)_i$ from (x, j),
 - \succ M_g be the log-space TM that computes $g(y)_i$ from (y, i).

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

 Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g's computation and start simulating M_f on input (x, j).

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

stores M_g's current configuration

• Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |f(x)|) + O(\log |x|)$.

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = O(log |x|).

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g's computation and start simulating M_f on input (x, j). This shows L_h is in L.

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

 Proof: ...Similarly, L'_h is in L and so h is implicitly logspace computable.

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \in L$ then $L_1 \in L$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• **Proof:** Same ideas. (*Homework*)

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t) : G \text{ is a digraph having a path from s to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: We've already shown that $PATH \in NL$. Now we'll show that for every $L \in NL$, $L \leq_l PATH$. We need to come up with an implicitly log-space computable function f s.t.

 $x \in L$ \iff $f(x) \in PATH$

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t) : G \text{ is a digraph having a path from s to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let M be a log-space NTM deciding L. Define, $f(x) = (G_{M,x}, C_{start}, C_{accept})$, where $G_{M,x}$ is given as an adjacency matrix.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t) : G \text{ is a digraph having a path from s to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let M be a log-space NTM deciding L. Define, $f(x) = (G_{M,x}, C_{start}, C_{accept})$, where $G_{M,x}$ is given as an adjacency matrix. Let $m = O(\log |x|)$ be the no. of bits required to represent a configuration. Then, $|f(x)| = 2^{2m} + 2m = poly(|x|)$.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t) : G \text{ is a digraph having a path from s to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let's see how to compute $f(x)_i$ from (x, i) using log-space: 2^{2m} bits f(x) $G_{M,x}$ C_{start} C_{accept}

If $i \ge 2^{2m}$ then i indexes a bit in the (C_{start}, C_{accept}) part of f(x); so $f(x)_i$ can be computed by simply writing down C_{start} and C_{accept} .

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t) : G \text{ is a digraph having a path from s to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let's see how to compute $f(x)_i$ from (x, i) using log-space: 2^{2m} bits f(x) $G_{M,x}$ C_{start} C_{accept}

If $i \leq 2^{2m}$ then write i as (C_1, C_2) , where C_1 and C_2 are m bits each, and check if C_2 is a neighbor of C_1 in $G_{M,x}$. This takes O(m) space.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t) : G \text{ is a digraph having a path from s to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Thus, we've argued that |f(x)| has poly(|x|) length and $L_f \in L$. Similarly, $L'_f \in L$. So, f defines a log-space reduction from L to PATH.

Other NL-complete problems

- Reachability in directed acyclic graphs.
- Checking if a directed graph is strongly connected.
- 2SAT.
- Determining if a word is accepted by a NFA.

An alternate characterization of NL

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

Definition.(first attempt) Suppose L is a language, and there's a <u>log-space verifier</u> M & a function q s.t.
 x ∈ L → ∃u ∈ {0,1}^{q(|x|)} s.t. M(x,u) = 1

Should we define q(|x|) as a log function, meaning $q(|x|) = O(\log |x|)$?

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing $\overrightarrow{PATH} \in NL$.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a function q s.t.
 x ∈ L → ∃u ∈ {0,1}^{q(|x|)} s.t. M(x,u) = 1

Should we define q(|x|) as a log function, meaning $q(|x|) = O(\log |x|)$? ...No, that's too restrictive. That will imply $L \in L$.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a <u>poly-function</u> q s.t.
 x ∈ L ➡ ∃u ∈ {0,1}^{q(|×|)} s.t. M(x,u) = 1

Is it so that $L \in NL$ iff L has such a log-space verifier of the above kind?

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a poly-function q s.t.
 x ∈ L → ∃u ∈ {0,1}^{q(|x|)} s.t. M(x,u) = 1

Is it so that $L \in NL$ iff L has such a log-space verifier of the above kind? Unfortunately not!! Exercise: $L \in NP$ iff L has such a log-space verifier.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a poly-function q s.t.
 x ∈ L → ∃u ∈ {0,1}^{q(|×|)} s.t. M(x,u) = 1

Solution: Make the certificate *read-one* as described next...

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

• Definition. A tape is called a *read-one tape* if the head moves from left to right and <u>never turns back</u>.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

Definition. A language L has read-once certificates if there's a log-space verifier M & a poly-function q s.t.
 x ∈ L → ∃u ∈ {0,1}^{q(|x|)} s.t. M(x,u) = 1, where u is given on a read-once input tape of M.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

• Theorem. $L \in NL$ iff L has read-once certificates.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

- Theorem. $L \in NL$ iff L has read-once certificates.
- Proof. Suppose L ∈ NL. Let N be an NTM that decides L. Think of a verifier M that on input (x, u) simulates N on input x by using u as the nondeterministic choices of N. Clearly |u| = poly(|x|)...

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

- Theorem. $L \in NL$ iff L has read-once certificates.
- Proof. (contd.) ...as G_{N,x} has poly(|x|) configurations.
 M scans u from left to right without moving its head backward. So, u is a read-once certificate satisfying,

 $x \in L \implies \exists u \in \{0, I\}^{poly(|x|)} \text{ s.t. } M(x,u) = I$

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

- Theorem. $L \in NL$ iff L has read-once certificates.
- Proof. (contd.) Suppose L has read-once certificates, and M be a log-space verifier s.t.

 $x \in L \implies \exists u \in \{0, I\}^{q(|x|)}$ s.t. M(x,u) = I.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

- Theorem. $L \in NL$ iff L has read-once certificates.
- Proof. (contd.) Now, think of an NTM N that on input x starts simulating M. It guesses the bits of u as and when required during the simulation. As u is readonce for M, there's no need for N to store u.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}

- Theorem. $L \in NL$ iff L has read-once certificates.
- Proof. (contd.) So, N is a log-space NTM deciding L.

Class co-NL

- Definition. A language L is in co-NL if L ∈ NL. L is <u>co-NL complete</u> if L ∈ co-NL and for every L' ∈ co-NL, L' is log-space reducible to L.
- PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}
 Obs. PATH is co-NL complete under log-space reduction.

Class co-NL

- Definition. A language L is in co-NL if L ∈ NL. L is <u>co-NL complete</u> if L ∈ co-NL and for every L' ∈ co-NL, L' is log-space reducible to L.
- PATH = {(G,s,t): G is a digraph with <u>no</u> path from s to t}
 Obs. PATH is co-NL complete under log-space reduction.
- Obs. If a language L' log-space reduces to a language in NL then L' ∈ NL. (*Homework*) So, if PATH ∈ NL then NL = co-NL.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. It is sufficient to show that there's a log-space verifier M & a poly-function q s.t.

 $x \in PATH \implies \exists u \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x,u) = I,$

where \mathbf{u} is given on a read-once input tape of \mathbf{M} .

• Let us focus on forming a <u>read-once certificate u</u> that convinces a verifier that there's no path from s to t...

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.
 - Read-once certificate u is of the form $(u_1, u_2, ..., u_m, v)$, where u_i 's and v are strings s.t.
 - (1) reading until $(u_1, u_2, ..., u_i)$ in a read-once fashion, M knows correctly the value of k_i .

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.
 - Read-once certificate u is of the form $(u_1, u_2, ..., u_m, v)$, where u_i 's and v are strings s.t.
 - (1) reading until $(u_1, u_2, ..., u_i)$ in a read-once fashion, M knows correctly the value of k_i . So, after reading $(u_1, u_2, ..., u_m)$, M knows k_m , the number of nodes reachable from s.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.
 - Read-once certificate u is of the form $(u_1, u_2, ..., u_m, v)$, where u_i 's and v are strings s.t.
 - (1) reading until $(u_1, u_2, ..., u_i)$ in a read-once fashion, M knows correctly the value of k_i . So, after reading $(u_1, u_2, ..., u_m)$, M knows k_m , the number of nodes reachable from s.
 - (2) v then convinces M (which already knows k_m) that t is not one of the k_m vertices reachable from s.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

u_i looks like:

The claimed value of k_i . O(log m) bits required.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that $u_1, ..., u_{i-1}$ have already been constructed and M knows k_{i-1} . Let r_1 , $...r_m$ be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

k	r _l	I	path of length ≤ i from s to r _l	r ₂	0	No path of length ≤ i from s to r ₂	• • •	r _m	1	path of length ≤ i from s to r _m
---	----------------	---	--	----------------	---	--	-------	----------------	---	--

- While reading u_i, M's work tape remembers the following info:
 - $I.k_{i-1}$ and k,
 - 2. the last read index of a vertex r_i

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u₁, ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_i , \dots r_m be the nodes of G s.t. r₁ < r₂ < \dots < r_m. Then,

u_i looks like:

k	r _l	I	path of length ≤ i from s to r _l	r ₂	0	No path of length ≤ i from s to r ₂	• • •	r _m	I	path of length ≤ i from <mark>s</mark> to r _m
---	----------------	---	--	----------------	---	--	-------	----------------	---	---

 While reading u_i, M's work tape remembers the following info: The moment M encounters a new vertex index r, it checks immediately if $r > r_i$. This ensures that M is not

 $I. k_{i-1}$ and k,

fooled by repeating info about the same vertex in u_i .

2. the last read index of a vertex r_i

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

u_i looks like:

k	r _l	I	path of length ≤ i from s to r _l	r ₂	0	No path of length \leq i from s to r ₂	•••	r _m	I	path of length ≤ i from s to r _m
---	----------------	---	--	----------------	---	---	-----	----------------	---	--

- While reading u_i, M's work tape remembers the following info:
 While reading u_i, M keeps a count of the number of indicator bits that are I and finally checks if this number is k.
 - 2. the last read index of a vertex r_j

 $I. k_{i-1}$ and k,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < ... < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

 $q_1 < q_2 < ... < q_{k'}$

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

q₁ < q₂ < ... < q_k?
While reading the 'No path...r₂' part of u_i, M remembers the last q_j read and checks that the next q
q_j. This ensures M is not fooled by repeating q's.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

 $q_1 < q_2 < ... < q_{k'}$

For every j ∈ [I,k_{i-1}], after verifying the path of length ≤ i-1 from s to q_j, M checks that r₂ is <u>not</u> adjacent to q_j by looking at G's adjacency matrix.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

 $q_1 < q_2 < ... < q_{k'}$

• At the end of reading the 'No path...r₂' part, M checks that the number of q's read is exactly k_{i-1} .

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

 $q_1 < q_2 < ... < q_{k'}$

• This convinces M that there is no path of length $\leq i$ from s to r_2 . Length of the 'No path... r_2 ' part of u_i is $O(m^2 \log m)$.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. So, after reading $(u_1, ..., u_m)$, the verifier M knows k_m , the number of vertices reachable from s.
- The v part of the certificate u is similar to the 'No path... r_2 ' part of u_i described before. The details here are easy to fill in (homework).
- We stress again that M is able to verify nonexistence of a path between s and t by <u>reading u once</u> from left to right and never moving its head backward.

• Hence, both PATH and $PATH \in NL \subseteq SPACE((\log n)^2)$

by Savitch's theorem.