Computational Complexity Theory

Lecture 8: Polynomial Hierarchy

Department of Computer Science,
Indian Institute of Science

Problems between NP & PSPACE

* There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
J or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(d,k): ¢ is a DNF and there’s a DNF @

of size < k that is equivalent to ¢}

e Two Boolean formulas on the same input variables are
equivalent if their evaluations agree on every
assignment to the variables.

Problems between NP & PSPACE

* There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
J or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(d,k): ¢ is a DNF and there’s a DNF @
of size < k that is equivalent to ¢}

e Is Eq-DNF in NP? ...if we give a DNF W as a
certificate, it is not clear how to efficiently verify that
W and ¢ are equivalent. (W.l.o.g. k < size of ¢ .)

Class),

o Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.

Class),

o Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.

e Obs. Eq-DNF is in).

* Proof. Think of u as another DNF @ and v as an
assighment to the variables. Poly-time TM M checks if
W has size < kand ¢(v) = W(v).

Class),

° A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.
x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.

o Eq-DNF is in).
* Proof. Think of u as another DNF @ and v as an

assighment to the variables. Poly-time TM M checks if
W has size < k and ¢(v) = Y(v).

o Even if ¢ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete.

Class),

o Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.

e Another example.
Succinct-SetCover = {(¢,,...9,,k): &’s are DNFs and there’s an

S €[m] of size < k s.t. V.. ®. is a tautology}

Class),

o Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.

e Obs. Succinct-SetCover is in) 5.

Class),

o Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.
e Obs. Succinct-SetCover is in) 5.

e Other natural problems in PH: “Completeness in the
Polynomial-Time Hierarchy: A Compendium” by

Class),

o Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3ue {01}k vy e {01} st M(x,u,yv) = I.

e Obs.PS NP C ¥,.

Class).

o Definition. A language L is in) if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3Ju, € {0,119 vu, € {0,1}9x) Q.u, € {0, 1}a(x)
s.t. M(x,uy,...,u) =1,
where Q, is 3 or V if i is odd or even, respectively.

e Obs.). C >.,, for every i.

Polynomial Hierarchy

o Definition. A language L is in) if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x EL @»3u, € {0,|}q(IXI) Yu, € {(),|}q(|><|) Qu; € {(),|}q(|><|)
s.t. M(x,uy,...,u) =1,

where Q, is 3 or V if i is odd or even, respectively.

e Definition.

PH=U 3. IZ
|2
> =NP
AN

Class [],

o Definition. [] = co-Y, = {L: L€ ¥,

o Obs. A language L is in [], if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®»vu, € {0,119 Ju, € {0,1}9xD Q.u, € {0, 1}alX)
s.t. M(x,u,...,u) =1,
where Q. is V or 3 if i is odd or even, respectively.

Class [],

o Definition. [] = co-Y, = {L: L€ ¥,

o Obs. A language L is in [], if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®»vu, €{0,1}9x) Ju, € {0,1}9x) Q.u, € {0, 1}ax)
s.t. M(x,uy,...,u) =1,
where Q. is V or 3 if i is odd or even, respectively.

© Obs. 2 S [T+ E 2542

Polynomial Hierarchy

« Obs.PH = U ¥,= U []..

PH = 22 [z

Polynomial Hierarchy

e Claim.PH < PSPACE.
e Proof. Similar to the proof of TQBF € PSPACE.

Does PH collapse!?

o Just as many of us believe P # NP (i.e.

>0 7 >;) and NP # co-NP (i.e. >, # [],), we also
believe that for every i, >.#>.,, and Y. #[].

o We say PH collapses to the i-th level if

Di= Disl -

o There is no i such that PH collapses to
the i-th level.

Does PH collapse!?

o Just as many of us believe P # NP (i.e.

>0 7 >;) and NP # co-NP (i.e. >, # [],), we also
believe that for every i, >.#>.,, and Y. #[].

o We say PH collapses to the i-th level if

Di= Disl -

o There is no i such that PH collapses to
the i-th level.

This is stronger than the P # NP conjecture.

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.

>

2 [

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.

>

> [l

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.

>

2i = [

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.

2i = [

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

PH collapse theorems

e Theorem.If >.=>.,, then PH=).

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ™ JuVu, ... Q,u,, st MXxup,..., u,) = 1.

PH collapse theorems

e Theorem.If >.=>.,, then PH=).

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L & 3JuVuy,... Qru, st Mxu,...,uy,) = 1.

e Define U ={(x,u|):Vu, ... Q. u.,, s.t M()CL'EJ, e Uy) = 1}

PH collapse theorems

e Theorem.If >.=>.,, then PH=).

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L & 3JuVuy,... Qru, st Mxu,...,uy,) = 1.

e Clearly,Lisin [+, = 2.

PH collapse theorems

e Theorem.If >.=>.,, then PH=).

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L & 3JuVuy,... Qru, st Mxu,...,uy,) = 1.

e Also,x € L #3u, s.t. (x,u,) €L.

PH collapse theorems

e Theorem.If >.=>.,, then PH=).

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L & 3JuVuy,... Qru, st Mxu,...,uy,) = 1.

e Also, x € L& 3Fu,3v\Vv, ... Qv, st. N(x,u,v,...,v) =1,
where N is a poly-time TM.

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L & 3JuVuy,... Qru, st Mxu,...,uy,) = 1.

e Also,x € L @3u,3v,Vv, ... Qv, s.t. N(x,u,v,...,v) = I.
_'_I

Merge the quantifiers

PH collapse theorems

e Theorem.If >, =>.,, then PH =} ..

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L & 3JuVuy,... Qru, st Mxu,...,uy,) = 1.

e Also,x e L @3V Vv, ... Qv s.t. N(x,v',...,v) = |.

PH collapse theorems

e Theorem.If >.=>.,, then PH=).

e Proof.Hence >. = >.., =[] =[]+ -
Goal is to show that >.,, = >.,,.

» Let L be a language in) .., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L @& 3JuVu,... Qyu, st Mxup,...,uu,) = 1.

* Hence, L is a language in >, = > ., .

PH collapse theorems

e Theorem.If). =[] then PH =).

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

e Define L' = {(x,u,):Vu, ... Q,;,u,, s.t. M(\)_(_,:Jh e Uyy) = 1}

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

o Clearly,Lisin[],=),.

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

e Also,x € L #3u, st. (x,u,) €L.

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

e Also, x € L# 3Ju,3v\Vv, ... Qv, st. N(x,u,v,...,v) = I,
where N is a poly-time TM.

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

e Also,x € L #3u,3v Vv, ... Qv, s.t. N(x,u,v,...,v) = I.
'’

Merge the quantifiers

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

e Also,x e L #3v' Vv, ... Qv s.t. N(x,v',...,v;) = |.

PH collapse theorems

e Theorem.If). =[] then PH =).
e Proof. Goal is to showthat) =[] = >.= > ., .

» Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x€L ®3uVu,... Q,u, st MMu,..,u,)=1.

* Hence, L is a language in) ;.

Complete problems in PH ?

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP=PH? ...use poly-time Karp reduction!

° A language L is PH-hard if for every L in
PH, L SPL’. Further,if L is in PH then L is PH-complete.

Complete problems in PH ?

o Fact. If L is poly-time reducible to a language in).
then Lisin).

Complete problems in PH ?

° If L is poly-time reducible to a language in),
then Lisin).

° If PH has a complete problem then PH
collapses.

* Proof. If L is PH-complete then L is in). for some i.
Now use the above fact to infer that PH =) ..

Complete problems in PH ?

o Fact. If L is poly-time reducible to a language in)
then Lisin).
e Corollary. PH & PSPACE unless PH collapses.

Complete problems in).

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e |sP=>).1?...use poly-time Karp reduction!

o A language L is) -hard if for every L in) ,
L <, L. Further,if L' isin >, then L is > -complete.

Complete problems in).

o Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) -complete.

Complete problems in).

o Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) .-SAT is). -complete.
* Proof. Easy to see that) -SAT isin) ..
x = 3v,Vv, ... Qv, d(v,...,v) € D .-SAT &
Ju,Vu, ... Qu, s.t. M(x,uy,...,u) =1,
where M outputs ¢(u, ..., u,).

Complete problems in).

o Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) -complete.

* Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x€L &3JuVu,...Qu st M(xu,...,u)=1I.

Complete problems in).

o Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) -complete.

* Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x€L &3JuVu,... Qu st ¢(xu,...,u)=1I.
\ 1

|

Boolean circuit

()

Complete problems in).

o Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) -complete.

* Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x€L @&»3JuVu, ... Qu ¢(xu,...,u)is true .

Complete problems in).

o Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) -complete.

* Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x€EL @&3JuVu,... Qu ¢(x,u,...,u) € > .-SAT.

Other complete problems in),

o Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium” by

e Theorem. Eq-DNF and Succinct-SetCover are
> » -complete.

An alternate characterization of PH

Oracle definition of).

S -SAT

o Definition. A language L is in NP if there is a poly-
time N'TM with oracle access to) .-SAT that decides L.

Y -SAT

e Theorem.)4y = NP :

Oracle definition of).

> -SAT

° A language L is in NP if there is a poly-
time N'TM with oracle access to) .-SAT that decides L.

Y -SAT

¢ 2i+1 = NP -

» Observe that) -SAT = SAT. Weé’'ll prove the special
case », = NP2, The proof of the theorem is similar.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <¢m3Iue {01} vv e {0} st M(x,u,v) = 1.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <¢mb3Iue {01}k vy e {0,119 st. ¢p(x,uv) = 1.

Boolean circuit

()

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial

function q(.) and a poly-time M-s.t
x €EL «¢m3Iu € {0,139 &v e {0,1}ax) st -I(I)(X,E

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}9(x) non-deterministically

and computes the circuit ¢(x,u,v). Then, it queries the
SAT oracle with =1 (x,u,v).

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <¢mb3Iu e {0,139 vy e {0,1}9D s.t. 2¢p(x,u,v) = 0.

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}9(x) non-deterministically

and computes the circuit ¢(x,u,v). Then, it queries the
SAT oracle with =1 (x,u,v).

e Wait.. 7(x,u,v) needn’t be a CNF!

Oracle definition of).

® Zz — NPSAT .

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <¢mb3Iu e {0,139 vy e {0,1}9D s.t. 2¢p(x,u,v) = 0.

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}9(x) non-deterministically

and computes the circuit ¢(x,u,v). Then, it queries the
SAT oracle with =1 (x,u,v).

e Use auxiliary variables to transform the query circuit
toa CNFE ()

Oracle definition of).

e Theorem.), = NPAT,

* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

e Think of a TM M that takes input x and w € {0, }3(*D
a, € {0,1} and u,, v,€ {0,1}90X), where q(|x|) is the
runtime of N on input x, and does the following:

A

Oracle definition of).

® ZZ — NPSAT .
* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

e Think of a TM M that takes input x and w € {0, }3(*D
a, € {0,1} and u,, v,€ {0,1}90X), where q(|x|) is the
runtime of N on input x, and does the following:

A

e M simulates N on input x with w as the non-
deterministic choices.

Oracle definition of).

® Zz — NPSAT .
* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

o N asks at most one query to SAT oracle
on every computation path on input x.

e Think of a TM M that takes input x and w € {0, }3(*D
a,€ {0,I} and u, v,€ {0,1}90X), where q(|x|) is the
runtime of N on input x, and does the following:

A

* M simulates N on input x with w as the computation
path. Suppose ¢ is the query asked by N on the path
of computation defined by w.

Oracle definition of).

® Zz — NPSAT .
* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

e Think of a TM M that takes input x and w € {0, 1 }a(*]),
a, € {0,1} and u,, v,€ {0,1}90X), where q(|x|) is the
runtime of N on input x, and does the following:

> Ifa;, = | and ¢(u;) = |, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores v,.)

Oracle definition of).

® ZZ — NPSAT .
* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

e Think of a TM M that takes input x and w € {0, 1 }a(*]),
a, € {0,1} and u,, v,€ {0,1}90X), where q(|x|) is the
runtime of N on input x, and does the following:

> Ifa; = 0 and ¢(v,) = 0, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores u,.)

Oracle definition of).

® Zz — NPSAT .
* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

e Think of a TM M that takes input x and w € {0, }3(*D
a,€ {0,I} and u, v,€ {0,1}90X), where q(|x|) is the
runtime of N on input x, and does the following:

A

* At the end of the simulation, M outputs whatever N
outputs. M is a poly-time TM.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

o Obs. For any w € {0,1}9(x) and a, € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) wv, € {0,1}9x) st. M(x,w, a;,u,v,)= 1.

(...will prove the observation shortly. Let’s finish the proof.)

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

exEL em»Iwe{0I1}90D ae{0,l1}s.t

> N on computation path w gets answer a, from the
SAT oracle and accepts x 3w € {0,1}190x) ;a2 € {0,1}

Ju, € {0,1}9x) wv, € {0,1}9x) st. M(x,w, a;,u,v,)= 1.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

exEL em»Iwe{0I1}90D ae{0,l1}s.t

> N on computation path w gets answer a, from the
SAT oracle and accepts x 3w € {0,1}190x) ;a2 € {0,1}

Ju, € {0,1}9x) wv, € {0,1}9x) st. M(x,w, a;,u,v,)= 1.

Call it u

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to SAT oracle
on every computation path on input x.

exEL e»3Iwe{0I}ID ae{0,l1}s.t

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju € {0,1}29xD*! vy, € {0,1}9x) st. M(x,u,v,) = I.
Therefore, Lis in).

Proof of the observation

o Obs. For any w € {0,1}9(x) and a € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) vy, € {0,1}9x) s.t. M(x,w, a,u,v,) = I.

Proof.(™) M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = |,3u, € {0,1}90%) ¢(u,) = | and N accepts x.

Proof of the observation

o Obs. For any w € {0,1}9(x) and a € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) vy, € {0,1}9x) s.t. M(x,w, a,u,v,) = I.

Proof.(™) M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = 1,3u, € {0,1}9(xD s.t. M(x,w,a,,u;,v,) = .

In this case, M ignores v,.

Proof of the observation

o Obs. For any w € {0,1}9(x) and a € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) vy, € {0,1}9x) s.t. M(x,w, a,u,v,) = I.

Proof.(™) M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = 0,Vv, € {0,1}90%) ¢(v,) = 0 and N accepts x.

Proof of the observation

o Obs. For any w € {0,1}9(x) and a € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) vy, € {0,1}9x) s.t. M(x,w, a,u,v,) = I.

Proof.(™) M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = 0, Vv, € {0,1}9(x) s.t. M(x,w, a,,u;,v|) = .

In this case, M ignores u,.

Proof of the observation

o Obs. For any w € {0,1}9(x) and a € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) vy, € {0,1}9x) s.t. M(x,w, a,u,v,) = I.

Proof.(™) M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

Irrespective of the value of a,,
Ju, € {0,1}9x) vv, € {0,1}9x) s.t. M(x,w,au,v,) = 1.

Proof of the observation

o Obs. For any w € {0,1}9(x) and a € {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9x) vy, € {0,1}9x) s.t. M(x,w, a,u,v,) = I.

Proof.(#=) Need to show that N on computation
path w gets answer a, from the SAT oracle.

()

Oracle definition of).

® Zz — NPSAT .
* Proof. Let L be a language in NPT, There’s a NTM N
that decides L with oracle access to SAT.

° N asks at most q(|x|) queries to SAT
oracle on every computation path on input x.

o : Prove the general case. Define the poly-
time machine M appropriately.

Oracles versus efficient algorithms

o A language L is in P>AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S N,

e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

Oracles versus efficient algorithms

o A language L is in P>AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S N,

e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

* Yet, in the first case we believe PAT # NPAT whereas
in the second case PH collapses to P i.e., P°AT = NPT,

e Why! Think to understand the difference between
oracles and poly-time algorithms for SAT ().

