Computational Complexity Theory

Lecture 8: Polynomial Hierarchy

Department of Computer Science, Indian Institute of Science

Problems between NP & PSPACE

 There are decision problems that don't appear to be captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP.

Example.

```
Eq-DNF = \{(\phi,k): \phi \text{ is a DNF and there's a DNF } \psi \text{ of size } \leq k \text{ that is } \underline{\text{equivalent}} \text{ to } \phi\}
```

 Two Boolean formulas on the same input variables are equivalent if their evaluations agree on every assignment to the variables.

Problems between NP & PSPACE

 There are decision problems that don't appear to be captured by nondeterminism alone (i.e., with a single
 ∃ or ∀ quantifier), unlike problems in NP and co-NP.

Example.

```
Eq-DNF = \{(\phi,k): \phi \text{ is a DNF and there's a DNF } \psi \text{ of size } \leq k \text{ that is } \underline{\text{equivalent}} \text{ to } \phi\}
```

• Is Eq-DNF in NP? ...if we give a DNF ψ as a certificate, it is not clear how to efficiently verify that ψ and ϕ are equivalent. (W.I.o.g. $k \le$ size of ϕ .)

• Definition. A language L is in \sum_2 if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

```
x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1.
```

• Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = I.$

- Obs. Eq-DNF is in \sum_{2} .
- Proof. Think of u as another DNF ψ and v as an assignment to the variables. Poly-time TM M checks if ψ has size $\leq k$ and $\phi(v) = \psi(v)$.

• Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = I.$

- Obs. Eq-DNF is in \sum_2 .
- Proof. Think of u as another DNF ψ and v as an assignment to the variables. Poly-time TM M checks if ψ has size $\leq k$ and $\phi(v) = \psi(v)$.
- Remark. (Masek 1979) Even if φ is given by its truth-table, the problem (i.e., DNF-MCSP) is NP-complete.

• Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

```
x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1.
```

• Another example.

```
Succinct-SetCover = \{(\phi_1,...,\phi_m,k): \phi_i's are DNFs and there's an S \subseteq [m] of size \leq k s.t. \bigvee_{i \in S} \phi_i is a tautology\}
```

• Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

```
x \in L \implies \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ s.t. \ M(x,u,v) = 1.
```

• Obs. (Homework) Succinct-SetCover is in \sum_{2} .

• Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = I.$

• Obs. (Homework) Succinct-SetCover is in \sum_{2} .

• Other natural problems in PH: "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008).

• Definition. A language L is in \sum_2 if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

```
x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1.
```

• Obs. $P \subseteq NP \subseteq \sum_2$.

• Definition. A language L is in \sum_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

```
x \in L \implies \exists u_1 \in \{0,1\}^{q(|x|)} \quad \forall u_2 \in \{0,1\}^{q(|x|)} \quad Q_i u_i \in \{0,1\}^{q(|x|)}
s.t. M(x,u_1,...,u_i) = I,
```

where Q_i is \exists or \forall if i is odd or even, respectively.

• Obs. $\sum_{i} \subseteq \sum_{i+1}$ for every i.

Polynomial Hierarchy

• Definition. A language L is in \sum_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

$$x \in L \implies \exists u_1 \in \{0,1\}^{q(|x|)} \quad \forall u_2 \in \{0,1\}^{q(|x|)} \quad Q_i u_i \in \{0,1\}^{q(|x|)}$$

s.t. $M(x,u_1,...,u_i) = I$,

where Q_i is \exists or \forall if i is odd or even, respectively.

• Definition. (Meyer & Stockmeyer 1972)

$$PH = \bigcup_{i \in N} \sum_{i}.$$

$$\sum_{1}^{3}$$

$$\sum_{2}^{1}$$

$$\sum_{1} = NP$$

$$\sum_{0} = P$$

Class \prod_i

- Definition. $\prod_i = co-\sum_i = \{L : \overline{L} \in \sum_i \}.$
- Obs. A language L is in \prod_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \ Q_i u_i \in \{0,1\}^{q(|x|)}
s.t. M(x,u_1,...,u_i) = I,
```

where Q_i is \forall or \exists if i is odd or even, respectively.

Class \prod_i

- Definition. $\prod_i = co-\sum_i = \{L : \overline{L} \in \sum_i \}.$
- Obs. A language L is in \prod_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.

$$x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \ Q_i u_i \in \{0,1\}^{q(|x|)}$$

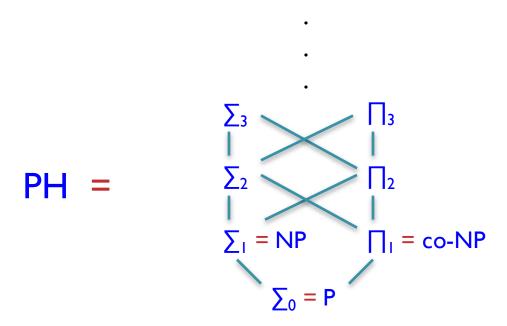
s.t. $M(x,u_1,...,u_i) = I$,

where Q_i is \forall or \exists if i is odd or even, respectively.

• Obs. $\sum_{i} \subseteq \prod_{i+1} \subseteq \sum_{i+2}$.

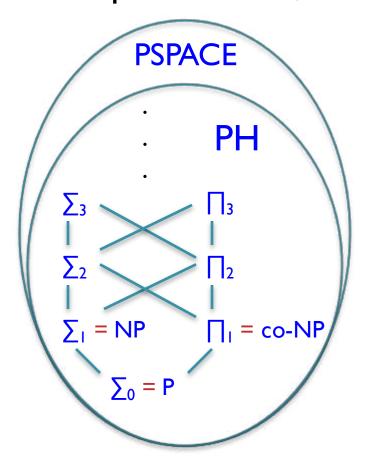
Polynomial Hierarchy

• Obs. PH =
$$\bigcup_{i \in \mathbb{N}} \sum_{i} = \bigcup_{i \in \mathbb{N}} \prod_{i}$$
.



Polynomial Hierarchy

- Claim. PH ⊆ PSPACE.
- Proof. Similar to the proof of TQBF ∈ PSPACE.



Does PH collapse?

- General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{0} \neq \sum_{1}$) and $NP \neq co-NP$ (i.e. $\sum_{1} \neq \prod_{1}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$.
- Definition. We say PH <u>collapses to the i-th level</u> if $\sum_{i=1}^{\infty} \sum_{i+1} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i+1} \sum_{j=1}^{\infty} \sum_{i+1} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i+1} \sum_{j=1}^{\infty} \sum_{i+1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}$
- Conjecture. There is no i such that PH collapses to the i-th level.

Does PH collapse?

- General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{0} \neq \sum_{1}$) and $NP \neq co-NP$ (i.e. $\sum_{1} \neq \prod_{1}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$.
- Definition. We say PH <u>collapses to the i-th level</u> if $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}$
- Conjecture. There is no i such that PH collapses to the i-th level.

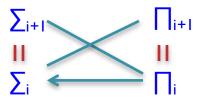
This is stronger than the $P \neq NP$ conjecture.

• Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .

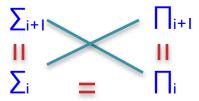
- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof.

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof.

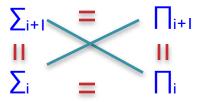
- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof.



- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof.



- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof.



- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

• Define L' = $\{(x, u_1): \forall u_2 \dots Q_{i+2}u_{i+2} \text{ s.t. } M(x, u_1, \dots, u_{i+2}) = 1\}$

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

• Clearly, L' is in $\prod_{i+1} = \sum_{i}$.

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

• Also, $x \in L \iff \exists u_1 \text{ s.t. } (x, u_1) \in L'$.

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

• Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i$ s.t. $N(x, u_1, v_1, \dots, v_i) = I$, where N is a poly-time TM.

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.
 - $x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.$
- Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, u_1, v_1, \dots, v_i) = 1.$ Merge the quantifiers

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

• Also, $x \in L \implies \exists v'_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, v'_1 \dots, v_i) = I.$

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$.
- Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.
```

• Hence, L is a language in $\sum_{i=1}^{\infty} = \sum_{i+1}^{\infty}$.

• Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

• Define L' = $\{(x, u_1): \forall u_2 \dots Q_{i+1}u_{i+1} \text{ s.t. } M(x, u_1, \dots, u_{i+1}) = 1\}$

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

• Clearly, L' is in $\prod_i = \sum_i$.

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

• Also, $x \in L \implies \exists u_1 \text{ s.t. } (x, u_1) \in L'$.

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

• Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i$ s.t. $N(x, u_1, v_1, \dots, v_i) = I$, where N is a poly-time TM.

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

• Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, u_1, v_1, \dots, v_i) = 1.$ Merge the quantifiers

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

• Also, $x \in L \implies \exists v'_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, v'_1 \dots, v_i) = I.$

- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .
- Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$.
- Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I.
```

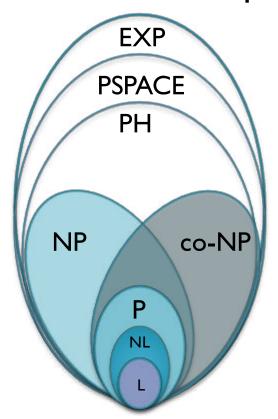
• Hence, L is a language in \sum_{i} .

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PH? ...use poly-time Karp reduction!
- Definition. A language L' is *PH-hard* if for every L in PH, L \leq_D L'. Further, if L' is in PH then L' is *PH-complete*.

• Fact. If L is poly-time reducible to a language in \sum_{i} then L is in \sum_{i} . (we've seen a similar fact for NP)

- Fact. If L is poly-time reducible to a language in \sum_i then L is in \sum_i . (we've seen a similar fact for NP)
- Observation. If PH has a complete problem then PH collapses.
- Proof. If L is *PH-complete* then L is in \sum_i for some i. Now use the above fact to infer that $PH = \sum_i$.

- Fact. If L is poly-time reducible to a language in \sum_i then L is in \sum_i . (we've seen a similar fact for NP)



- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is $P = \sum_{i}$? ... use poly-time Karp reduction!
- Definition. A language L' is \sum_{i} -hard if for every L in \sum_{i} , L \leq_{D} L'. Further, if L' is in \sum_{i} then L' is \sum_{i} -complete.

• Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists .

• Theorem. \sum_{i} -SAT is \sum_{i} -complete. (\sum_{i} -SAT is just SAT)

- Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists .
- Theorem. \sum_{i} -SAT is \sum_{i} -complete.
- Proof. Easy to see that \sum_{i} -SAT is in \sum_{i} .

```
x = \exists v_1 \forall v_2 \dots Q_i v_i \ \phi(v_1, \dots, v_i) \in \sum_i -SAT
\exists u_1 \forall u_2 \dots Q_i u_i \quad s.t. \quad M(x, u_1, \dots, u_i) = I,
where M outputs \phi(u_1, \dots, u_i).
```

- Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists .
- Theorem. \sum_{i} -SAT is \sum_{i} -complete.
- Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \text{s.t.} \quad M(x, u_1, \dots, u_i) = I.
```

- Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists .
- Theorem. \sum_{i} -SAT is \sum_{i} -complete.
- Proof. Let L be a language in \sum_i . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \implies \exists u_1 \forall u_2 \dots Q_i u_i \quad \text{s.t. } \phi(x, u_1, \dots, u_i) = I.

Boolean circuit

(by Cook-Levin)
```

- Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists .
- Theorem. \sum_{i} -SAT is \sum_{i} -complete.
- Proof. Let L be a language in \sum_i . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \phi(x, u_1, \dots, u_i) is true.
```

- Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists .
- Theorem. \sum_{i} -SAT is \sum_{i} -complete.
- Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \phi(x, u_1, \dots, u_i) \in \sum_i -SAT.
```

Other complete problems in \sum_{2}

• Ref. "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008).

• Theorem. Eq-DNF and Succinct-SetCover are \sum_2 -complete.

An alternate characterization of PH

• Definition. A language L is in $NP^{\Sigma_i\text{-SAT}}$ if there is a polytime NTM with oracle access to $\Sigma_i\text{-SAT}$ that decides L.

• Theorem. $\sum_{i+1} = NP^{\sum_{i-SAT}}$.

• Definition. A language L is in $NP^{\Sigma_i\text{-SAT}}$ if there is a polytime NTM with oracle access to $\Sigma_i\text{-SAT}$ that decides L.

• Theorem. $\sum_{i+1} = NP^{\sum_{i-SAT}}$.

• Observe that \sum_{i} -SAT = SAT. We'll prove the special case \sum_{i} = NPSAT. The proof of the theorem is similar.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1.
```

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} s.t. \phi(x,u,v) = 1.

Boolean circuit

(by Cook-Levin)
```

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \quad \Longrightarrow \exists u \in \{0,1\}^{q(|x|)} \quad \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } \neg \varphi(x,u,v) = 0.
```

• Think of a NTM N that has the knowledge of M. On input x, it guesses $u \in \{0,1\}^{q(|x|)}$ non-deterministically and computes the circuit $\phi(x,u,v)$. Then, it queries the SAT oracle with $\neg \phi(x,u,v)$.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } \neg \varphi(x,u,v) = 0.
```

- Think of a NTM N that has the knowledge of M. On input x, it guesses $u \in \{0,1\}^{q(|x|)}$ non-deterministically and computes the circuit $\phi(x,u,v)$. Then, it queries the SAT oracle with $\neg \phi(x,u,v)$.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } \neg \varphi(x,u,v) = 0.
```

- Think of a NTM N that has the knowledge of M. On input x, it guesses $u \in \{0,1\}^{q(|x|)}$ non-deterministically and computes the circuit $\phi(x,u,v)$. Then, it queries the SAT oracle with $\neg \phi(x,u,v)$.
- Use auxiliary variables to transform the query circuit to a CNF. (Cook-Levin)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- M simulates N on input x with w as the nondeterministic choices.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- M simulates N on input x with w as the <u>computation</u> <u>path</u>. Suppose \(\phi \) is the query asked by N on the path of computation defined by w.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- If $a_1 = I$ and $\phi(u_1) = I$, M continues the simulation; else it stops and outputs 0. (In this case, M ignores v_1 .)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- If $a_1 = 0$ and $\phi(v_1) = 0$, M continues the simulation; else it stops and outputs 0. (In this case, M ignores u_1 .)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- At the end of the simulation, M outputs whatever N outputs.
 Note: M is a poly-time TM.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \longleftrightarrow$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

(...will prove the observation shortly. Let's finish the proof.)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- $x \in L \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\} \text{ s.t.}$
- Non computation path w gets answer a_1 from the SAT oracle and accepts $x \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\}$ $\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.$

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- $x \in L$ $\Longrightarrow \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\} \text{ s.t.}$
- Non computation path w gets answer a_1 from the SAT oracle and accepts $x \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\}$

$$\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,w,a_1,u_1,v_1) = 1.$$

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to SAT oracle on every computation path on input x.
- $x \in L \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\} \text{ s.t.}$
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \longleftrightarrow$
 - $\exists u \in \{0,1\}^{2q(|x|)+1} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v_1) = 1.$
- Therefore, L is in \sum_{2} .

- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

- Proof.(→) M simulates N on computation path w.
 Let \$\phi\$ be the query asked by N to SAT.
- If $a_1 = 1, \exists u_1 \in \{0,1\}^{q(|x|)} \phi(u_1) = 1$ and N accepts x.

- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

- Proof.(→) M simulates N on computation path w.
 Let \$\phi\$ be the query asked by N to SAT.
- If $a_1 = 1, \exists u_1 \in \{0,1\}^{q(|x|)}$ s.t. $M(x,w,a_1,u_1,v_1) = 1$.

In this case, M ignores v₁.

- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

- Proof.(→) M simulates N on computation path w.
 Let \$\phi\$ be the query asked by N to SAT.
- If $a_1 = 0$, $\forall v_1 \in \{0,1\}^{q(|x|)} \phi(v_1) = 0$ and N accepts x.

- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

- Proof.(→) M simulates N on computation path w.
 Let \$\phi\$ be the query asked by N to SAT.
- If $a_1 = 0$, $\forall v_1 \in \{0,1\}^{q(|x|)}$ s.t. $M(x,w,a_1,u_1,v_1) = 1$.

In this case, M ignores u_1 .

- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \longleftrightarrow$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

- Proof.(→) M simulates N on computation path w.
 Let \$\phi\$ be the query asked by N to SAT.
- Irrespective of the value of a₁,

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

- Obs. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$

```
\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.
```

Proof. () Need to show that N on computation path w gets answer a from the SAT oracle.
 (Homework)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- General case: N asks at most q(|x|) queries to SAT oracle on every computation path on input x.
- Homework: Prove the general case. Define the polytime machine M appropriately.

Oracles versus efficient algorithms

- Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L.
- $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \bigcap_2$.
- A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT.

Oracles versus efficient algorithms

- Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L.
- $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \bigcap_2$.
- A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT.
- Yet, in the first case we believe $P^{SAT} \neq NP^{SAT}$, whereas in the second case PH collapses to P, i.e., $P^{SAT} = NP^{SAT}$.
- Why? Think to understand the difference between oracles and poly-time algorithms for SAT (Homework).