
Computational Complexity Theory 

 

  Lecture 9:  Boolean circuits; Karp-Lipton 

                  theorem; class AC and NC 

 

 
Department of Computer Science, 

Indian Institute of Science 



An algorithm for every input length? 

 “One might imagine that P ≠ NP, but SAT is tractable in 
the following sense: for every 𝓁 there is a very short 
program that runs in time 𝓁 

2 and correctly treats all 
instances of size 𝓁.”   ---   Karp and Lipton (1982).  

 

 



An algorithm for every input length? 

 “One might imagine that P ≠ NP, but SAT is tractable in 
the following sense: for every 𝓁 there is a very short 
program that runs in time 𝓁 

2 and correctly treats all 
instances of size 𝓁.”   ---   Karp and Lipton (1982).  

 

 

 P ≠ NP rules out the existence of a single efficient 
algorithm for SAT that handles all input lengths. But, it 
doesn’t rule out the possibility of having a sequence of 
efficient SAT algorithms – one for each input length.  



Lesson learnt from Cook-Levin 

 Locality of computation implies that an algorithm A 
working on inputs of some fixed length n and running 
in time T(n) can be viewed as a Boolean circuit ϕ of 
size O(T(n)2) s.t.   A(x) = ϕ(x) for every x ∈ {0,1}n . 

 On the other hand, a circuit on inputs of length n and 
of size S can be viewed as an algorithm working on 
length n inputs and running in time S.  



Lesson learnt from Cook-Levin 

 Locality of computation implies that an algorithm A 
working on inputs of some fixed length n and running 
in time T(n) can be viewed as a Boolean circuit ϕ of 
size O(T(n)2) s.t.   A(x) = ϕ(x) for every x ∈ {0,1}n . 

 On the other hand, a circuit on inputs of length n and 
of size S can be viewed as an algorithm working on 
length n inputs and running in time S.  

 

 To rule the existence of a sequence of algorithms – 
one for each input length – we need to rule out the 
existence of a sequence of (i.e., a family of) circuits.     



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  
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 Typically, we’ll consider circuits with one output gate, 
and with nodes having in-degree at most two. 
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length of the longest path from an i/p to o/p node. 
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Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size corresponds to “sequential time complexity”. 
Depth corresponds to “parallel time complexity”. 



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 If every node in a circuit has out-degree at most one, 
then the circuit is called a formula. 



A circuit for Parity 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

∨ 

∧ ∧ 

¬ ¬ 

x1 x2 

x1 ⊕ x2  =  (x1∧¬x2) ∨ (¬x1∧ x2) 

Size(ϕ) = |ϕ| = 8 
Depth(ϕ) = 3 

ϕ 



Circuit family 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 
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{Cn}n∈  decides L, i.e., 
Cn decides L∩{0,1}n. 
 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 

Alternatively, we say 
Cn computes the 
characteristic 
function of L∩{0,1}n. 
 



Class P/poly 

 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 
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 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

   (Note:  Cn is poly(n)-time computable from 1n.) 

 

 Is P = P/poly? No! P/poly contains undecidable 
languages. 

 



Class P/poly 

 Let HALT = {(M,y) : M halts on input y}. HALT is an 
undecidable language.  

 Notation.  #(M,y) = number corresponding to the 
binary string (M,y).  

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 



Class P/poly 

 Let HALT = {(M,y) : M halts on input y}. HALT is an 
undecidable language.  

 Notation.  #(M,y) = number corresponding to the 
binary string (M,y).  

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 

 Obs.  Any unary language is in P/poly.  (Homework) 

   Hence, P ⊊ P/poly . 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 
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Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. Hardware Software 

Algo/Enc. of TM 

An algo per i/p length 

TM (uniform) 

Circuits (non-uniform) 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly? 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. We’ll show that NP ⊊ P/poly implies ∏2 = ∑2 . 
It’s sufficient to show that ∏2 ⊆ ∑2 . 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  M(x,u1, u2) = 1. 

 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  M(x,u1, u2) = 1. 

 Goal. Come up with a polynomial function p(.) and a 
poly-time TM N s.t. 

   x ∈ L       ∃v1 ∈ {0,1}p(|x|) ∀v2 ∈ {0,1}p(|x|)  N(x,u1, u2) = 1. 

 Think about designing such a TM N. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x| 
= n, then |ϕ| = O(T(n)2). Let m = #(bits to write ϕ). 

 N can compute ϕ from M in poly(|x|) time. 

 

 

 

by Cook-Levin 
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 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
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 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x| 
= n, then |ϕ| = O(T(n)2). Let m = length of ϕ . 

 N can compute ϕ from M in poly(|x|) time. 
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Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 

 

 

 

ϕ(x,u1, u2) as a function of u2 is 
satisfiable. Wlog ϕ is a CNF (why?). 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 By assumption, SAT ∈ P/poly, i.e., there’s a circuit Cm 
of size p(m) = mO(1) that correctly decides satifiability 
of all input circuits ϕ of length m.   
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 Wrong!  Think about a Cm that always outputs 1. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 First attempt. A ∑2 statement to capture membership 
of strings in L. 

   x ∈ L      ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1. 

 

 Need to be sure that Cm is the right circuit. 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 If there’s a circuit Cm of size mO(1) that correctly 
decides satifiability of all input circuits ϕ of length m, 
then by self-reducibility of SAT, there’s a multi-output 
circuit Dm of size r(m) = mO(1) that outputs a 
satisfying assignment for input ϕ if ϕ ∈ SAT.  (Homework) 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1. 

 

 
assignment to the u2 variables 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1. 

 

 
Can be checked by a poly-time TM N. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  N(x, Dm, u1) = 1. 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 

 If we can show NP ⊄ P/poly assuming P ≠ NP , then 

            NP ⊄ P/poly            P ≠ NP . 

 

 Karp-Lipton theorem shows NP ⊊ P/poly assuming 
the stronger statement PH ≠ ∑2 . 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?   

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Follows from a counting argument. 
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 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of bits required to write the adjacency lists 
it at most s(log s + 3) + 4(s + n) ≤ 9s.log s . 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of circuits of size s is at most 3s.29s.log s . 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of circuits of size s is at most 211s.log s . 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of circuits of size s is at most exp(2n-1). 

 Number of functions in n variables is exp(2n). 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 So, circuits of size s can compute at most exp(-2n-1) 
fraction of all Boolean functions on n variables. 
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 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 

Results of this kind are known as 
circuit lower bound. 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 

 Open problem. Prove that NEXP ⊄ P/poly . 



Lower bounds for restricted circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 



Lower bounds for restricted circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

                                           Homework 



Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Khrapchenko 1971) Any formula 
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).  

                                            



Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Andreev 1987, Hastad 1998) There’s a f 
that can be computed by a O(n)-size circuit such that 
any formula computing f has size 𝛀(n3-o(1)).  

                                            Technique:  Shrinkage of formulas under random restrictions (Subbotovskaya 1961).  



Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Conjecture. There’s a f that can be computed by a 
O(n)-size circuit such that any formula computing f 
has size nω(1) .  

                                            An interesting approach was given by 
Karchmer, Raz & Wigderson (1995) . 



LB for AC0 and monotone circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 We’ll discuss lower bounds for constant depth 
circuits and monotone circuits in the next 2 lectures.  

                                            



Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 



Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 Proof. Uses Shanon’s result and a counting argument. 

                                     (Homework) 

 



Class NCi and ACi 



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 
i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 Homework:  PARITY is in NC1. 

i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 NC1 = poly(n)-size Boolean formulas. (Assignment) 

i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Further, L is in log-space uniform NCi if Cn is implicitly 
log-space computable from 1n.  

Note:  Sometimes NCi is defined as 
log-space uniform NCi . 



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Further, L is in log-space uniform NCi if Cn is implicitly 
log-space computable from 1n.  

log-space uniform NC ⊆ P . 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 

 Assumptions on the parallel computation model: 

A processor can deliver a message to any other 
processor in O(log n) time. 

A processor has O(log n) bits of memory and 
performs a poly-time computation at every step. 

Processor computation steps are synchronized. 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 

 

 Observation. A language L is in NC if and only if L 
can be decided efficiently in parallel. 

 Proof. Almost immediate from the assumptions on 
the parallel computation model. 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. (stands for Alternating Class) 
i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Observation.  ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0. 

i ≥ 0 

Replace an unbounded fan-in gate by a 
binary tree of bounded fan-in gates. 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Observation.  NC = AC. 

i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 In the next lecture, we’ll show that PARITY is not in 
AC0, i.e.,  AC0 ⊊ NC1. 

i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Further, L is in log-space uniform ACi if Cn is implicitly 
log-space computable from 1n.  

i ≥ 0 

log-space uniform AC ⊆ P . 



P-completeness 



P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = (uniform) NC? Is P = L?…use log-space 
reduction! 

 

 Definition.  A language L ∈ P is P-complete if for every 
L’ in P , L’ ≤l L. 



P-complete problems 

 Circuit value problem. Given a circuit and an input, 
compute the output of the circuit. (The reduction in the 
Cook-Levin theorem can be made a log-space reduction.) 

 

 Linear programming. Check the feasibility of a system 
of linear inequality constraints over rationals. 
(Assignment problem) 

  

 CFG membership. Given a context-free grammar and 
a string, decide if the string can be generated by the 
grammar. 



No log-space algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in L          P = L. 

 Proof.  Easy. 

 

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L. 

 

 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.      direction is straightforward.  

 

 Can’t hope to get an efficient parallel algorithm for a 
P-complete problem unless P ⊆ NC. 

 

 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.(    ) Let L’ ∈ P. As L is P-complete, L’ ≤l L. 

 

 

… 

NC ckt for 
L ∩ {0,1}m 

y ∈ {0,1}m 

… … 

Log-space 
   algo 

Log-space 
   algo 

x ∈ {0,1}n x ∈ {0,1}n 

… 

m = poly(n) 

Is x ∈ L’ ? 

Size = poly(n) 
Depth = poly(log n) 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.(    ) Let L’ ∈ P. As L is P-complete, L’ ≤l L. 

 

 

… 

NC ckt for 
L ∩ {0,1}m 

y ∈ {0,1}m 

… … 

Log-space 
   algo 

Log-space 
   algo 

x ∈ {0,1}n x ∈ {0,1}n 

… 

m = poly(n) 

Is x ∈ L’ ? 

Size = poly(n) 
Depth = poly(log n) 

Need to replace 
this by a NC ckt. 



Parallelization of Log-space 

 Do problems in L have efficient parallel algorithms? 
Yes!  

 

 Theorem.  NL ⊆ (uniform) NC.   (Assignment problem) 

 

 

 



Parallelization of Log-space 

 Do problems in L have efficient parallel algorithms? 
Yes!  

 

 Theorem.  NL ⊆ (uniform) NC.   (Assignment problem) 

 Proof sketch.  

 1. Construct the adjacency matrix A of the 
configuration graph. 

 2. Use repeated squaring of A to find out if there’s a 
path from start to accept configurations. 

 

 

 



Complexity zoo 

EXP 

PSPACE 

PH 

L 

NL 

P 

NP co-NP 

NC 

NEXP 

(uniform) NC 


