
Computational Complexity Theory

 Lecture 9: Boolean circuits; Karp-Lipton

 theorem; class AC and NC

Department of Computer Science,

Indian Institute of Science

An algorithm for every input length?

 “One might imagine that P ≠ NP, but SAT is tractable in
the following sense: for every 𝓁 there is a very short
program that runs in time 𝓁

2 and correctly treats all
instances of size 𝓁.” --- Karp and Lipton (1982).

An algorithm for every input length?

 “One might imagine that P ≠ NP, but SAT is tractable in
the following sense: for every 𝓁 there is a very short
program that runs in time 𝓁

2 and correctly treats all
instances of size 𝓁.” --- Karp and Lipton (1982).

 P ≠ NP rules out the existence of a single efficient
algorithm for SAT that handles all input lengths. But, it
doesn’t rule out the possibility of having a sequence of
efficient SAT algorithms – one for each input length.

Lesson learnt from Cook-Levin

 Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ϕ of
size O(T(n)2) s.t. A(x) = ϕ(x) for every x ∈ {0,1}n .

 On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

Lesson learnt from Cook-Levin

 Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ϕ of
size O(T(n)2) s.t. A(x) = ϕ(x) for every x ∈ {0,1}n .

 On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

 To rule the existence of a sequence of algorithms –
one for each input length – we need to rule out the
existence of a sequence of (i.e., a family of) circuits.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Typically, we’ll consider circuits with one output gate,
and with nodes having in-degree at most two.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

 𝚹(no. of nodes)

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size corresponds to “sequential time complexity”.
Depth corresponds to “parallel time complexity”.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 If every node in a circuit has out-degree at most one,
then the circuit is called a formula.

A circuit for Parity

 PARITY(x1, x2, …, xn) = x1 ⊕ x2 ⊕ … ⊕ xn .

∨

∧ ∧

¬ ¬

x1 x2

x1 ⊕ x2 = (x1∧¬x2) ∨ (¬x1∧ x2)

Size(ϕ) = |ϕ| = 8
Depth(ϕ) = 3

ϕ

Circuit family

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

The circuit family
{Cn}n∈ decides L, i.e.,
Cn decides L∩{0,1}n.

Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Alternatively, we say
Cn computes the
characteristic
function of L∩{0,1}n.

Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 (Note: Cn is poly(n)-time computable from 1n.)

 Is P = P/poly?

Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 (Note: Cn is poly(n)-time computable from 1n.)

 Is P = P/poly? No! P/poly contains undecidable
languages.

Class P/poly

 Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

 Notation. #(M,y) = number corresponding to the
binary string (M,y).

 Let UHALT = {1#(M,y) : (M,y) ∈ HALT}. Then, UHALT
is also an undecidable language.

Class P/poly

 Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

 Notation. #(M,y) = number corresponding to the
binary string (M,y).

 Let UHALT = {1#(M,y) : (M,y) ∈ HALT}. Then, UHALT
is also an undecidable language.

 Obs. Any unary language is in P/poly. (Homework)

 Hence, P ⊊ P/poly .

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs.

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs. Hardware Software

Algo/Enc. of TM

An algo per i/p length

TM (uniform)

Circuits (non-uniform)

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly?

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. We’ll show that NP ⊊ P/poly implies ∏2 = ∑2 .
It’s sufficient to show that ∏2 ⊆ ∑2 .

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) M(x,u1, u2) = 1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) M(x,u1, u2) = 1.

 Goal. Come up with a polynomial function p(.) and a
poly-time TM N s.t.

 x ∈ L ∃v1 ∈ {0,1}p(|x|) ∀v2 ∈ {0,1}p(|x|) N(x,u1, u2) = 1.

 Think about designing such a TM N.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x|
= n, then |ϕ| = O(T(n)2). Let m = #(bits to write ϕ).

 N can compute ϕ from M in poly(|x|) time.

by Cook-Levin

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x|
= n, then |ϕ| = O(T(n)2). Let m = length of ϕ .

 N can compute ϕ from M in poly(|x|) time.

by Cook-Levin

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

ϕ(x,u1, u2) as a function of u2 is
satisfiable. Wlog ϕ is a CNF (why?).

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 By assumption, SAT ∈ P/poly, i.e., there’s a circuit Cm
of size p(m) = mO(1) that correctly decides satifiability
of all input circuits ϕ of length m.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 First attempt. A ∑2 statement to capture membership
of strings in L.

 x ∈ L ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 First attempt. A ∑2 statement to capture membership
of strings in L.

 x ∈ L ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1.

 Wrong! Think about a Cm that always outputs 1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 First attempt. A ∑2 statement to capture membership
of strings in L.

 x ∈ L ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1.

 Need to be sure that Cm is the right circuit.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 If there’s a circuit Cm of size mO(1) that correctly
decides satifiability of all input circuits ϕ of length m,
then by self-reducibility of SAT, there’s a multi-output
circuit Dm of size r(m) = mO(1) that outputs a
satisfying assignment for input ϕ if ϕ ∈ SAT. (Homework)

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 A ∑2 statement to capture membership in L.

 x ∈ L

 ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1.

assignment to the u2 variables

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 A ∑2 statement to capture membership in L.

 x ∈ L

 ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1.

Can be checked by a poly-time TM N.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 A ∑2 statement to capture membership in L.

 x ∈ L

 ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|) N(x, Dm, u1) = 1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 If we can show NP ⊄ P/poly assuming P ≠ NP , then

 NP ⊄ P/poly P ≠ NP .

 Karp-Lipton theorem shows NP ⊊ P/poly assuming
the stronger statement PH ≠ ∑2 .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly?

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Follows from a counting argument.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of bits required to write the adjacency lists
it at most s(log s + 3) + 4(s + n) ≤ 9s.log s .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of circuits of size s is at most 3s.29s.log s .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of circuits of size s is at most 211s.log s .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of circuits of size s is at most exp(2n-1).

 Number of functions in n variables is exp(2n).

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 So, circuits of size s can compute at most exp(-2n-1)
fraction of all Boolean functions on n variables.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP?

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

Results of this kind are known as
circuit lower bound.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Open problem. Prove that NEXP ⊄ P/poly .

Lower bounds for restricted circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

Lower bounds for restricted circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Homework

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Khrapchenko 1971) Any formula
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size 𝛀(n3-o(1)).

 Technique: Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Conjecture. There’s a f that can be computed by a
O(n)-size circuit such that any formula computing f
has size nω(1) .

 An interesting approach was given by
Karchmer, Raz & Wigderson (1995) .

LB for AC0 and monotone circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 We’ll discuss lower bounds for constant depth
circuits and monotone circuits in the next 2 lectures.

Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

 Proof. Uses Shanon’s result and a counting argument.

 (Homework)

Class NCi and ACi

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.
i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 Homework: PARITY is in NC1.

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 NC1 = poly(n)-size Boolean formulas. (Assignment)

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is implicitly
log-space computable from 1n.

Note: Sometimes NCi is defined as
log-space uniform NCi .

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is implicitly
log-space computable from 1n.

log-space uniform NC ⊆ P .

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Assumptions on the parallel computation model:

A processor can deliver a message to any other
processor in O(log n) time.

A processor has O(log n) bits of memory and
performs a poly-time computation at every step.

Processor computation steps are synchronized.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Observation. A language L is in NC if and only if L
can be decided efficiently in parallel.

 Proof. Almost immediate from the assumptions on
the parallel computation model.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi. (stands for Alternating Class)
i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0.

i ≥ 0

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. NC = AC.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 In the next lecture, we’ll show that PARITY is not in
AC0, i.e., AC0 ⊊ NC1.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Further, L is in log-space uniform ACi if Cn is implicitly
log-space computable from 1n.

i ≥ 0

log-space uniform AC ⊆ P .

P-completeness

P-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = (uniform) NC? Is P = L?…use log-space
reduction!

 Definition. A language L ∈ P is P-complete if for every
L’ in P , L’ ≤l L.

P-complete problems

 Circuit value problem. Given a circuit and an input,
compute the output of the circuit. (The reduction in the
Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system
of linear inequality constraints over rationals.
(Assignment problem)

 CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

No log-space algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in L P = L.

 Proof. Easy.

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof. direction is straightforward.

 Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P ⊆ NC.

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof.() Let L’ ∈ P. As L is P-complete, L’ ≤l L.

…

NC ckt for
L ∩ {0,1}m

y ∈ {0,1}m

… …

Log-space
 algo

Log-space
 algo

x ∈ {0,1}n x ∈ {0,1}n

…

m = poly(n)

Is x ∈ L’ ?

Size = poly(n)
Depth = poly(log n)

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof.() Let L’ ∈ P. As L is P-complete, L’ ≤l L.

…

NC ckt for
L ∩ {0,1}m

y ∈ {0,1}m

… …

Log-space
 algo

Log-space
 algo

x ∈ {0,1}n x ∈ {0,1}n

…

m = poly(n)

Is x ∈ L’ ?

Size = poly(n)
Depth = poly(log n)

Need to replace
this by a NC ckt.

Parallelization of Log-space

 Do problems in L have efficient parallel algorithms?
Yes!

 Theorem. NL ⊆ (uniform) NC. (Assignment problem)

Parallelization of Log-space

 Do problems in L have efficient parallel algorithms?
Yes!

 Theorem. NL ⊆ (uniform) NC. (Assignment problem)

 Proof sketch.

 1. Construct the adjacency matrix A of the
configuration graph.

 2. Use repeated squaring of A to find out if there’s a
path from start to accept configurations.

Complexity zoo

EXP

PSPACE

PH

L

NL

P

NP co-NP

NC

NEXP

(uniform) NC

