. Computational Complexity Theory

Lecture 9: Boolean circuits; Karp-Lipton
theorem; class AC and NC

Department of Computer Science,
Indian Institute of Science

An algorithm for every input length!?

 “One might imagine that P # NP, but SAT is tractable in
the following sense: for every ¢/ there is a very short
program that runs in time /7 and correctly treats all
instances of size /. — Karp and Lipton (1982).

An algorithm for every input length!?

 “One might imagine that P # NP, but SAT is tractable in
the following sense: for every ¢/ there is a very short
program that runs in time /7 and correctly treats all
instances of size /. — Karp and Lipton (1982).

P # NP rules out the existence of a single efficient
algorithm for SAT that handles all input lengths. But, it
doesn’t rule out the possibility of having a sequence of
efficient SAT algorithms — one for each input length.

Lesson learnt from Cook-Levin

* Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

e On the other hand, a circuit on inputs of length n and

of size S can be viewed as an algorithm working on
length n inputs and running in time S.

Lesson learnt from Cook-Levin

* Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

e On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

* To rule the existence of a sequence of algorithms —
one for each input length — we need to rule out the
existence of a sequence of (i.e.,a family of) circuits.

Boolean circuits

* A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

Boolean circuits

* A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

 Typically, we’ll consider circuits with one output gate,
and with nodes having in-degree at most two.

Boolean circuits

* A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

» Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Boolean circuits

* A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.
Nodes with out-degree zero are the output gates.

O(no. of nodes)

» Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Boolean circuits

* A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

» Size corresponds to “sequential time complexity”.
Depth corresponds to “parallel time complexity”.

Boolean circuits

* A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

* If every node in a circuit has out-degree at most one,
then the circuit is called a formula.

A circuit for Parity

e PARITY (x|, X, ..

5X) = X D x, D ... Dx,.

X D x; = (X;A7X;) V (7XA X,)

NG

¢

Size(¢) = [¢p] =8
Depth(¢) = 3

Circuit family

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C.},en such that C_has n inputs and |C | = T(n).

Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C, },,en such that C_ has n inputs and |C | =T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {C,}, cn such that

xeL ®C (x)=1, wheren = [x|.

e Defintion: Class P/poly = U SIZE(n¢).

c=|

Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C, },,en such that C_ has n inputs and |C | =T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {C_} -y such that

@ &= C (x) = |, wheren =D

The circuit family

e Defintion: Class P/poly = U SIZE(n¢). {Colnen decides L, e,
czl C, decides LN{0, 1 }".

Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C, },,en such that C_ has n inputs and |C | =T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {C_} -y such that

@ &= C (x) = |, wheren =D

Alternatively, we say

e Defintion: Class P/poly = U SIZE(n®). C, computes the

cz| characteristic
function of LMN{0,1}".

Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*)-size circuit family {C }. . such that

xeL e»C (x) =1, wheren = |x|.

Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*)-size circuit family {C }. . such that

xeL e»C (x) =1, wheren = |x|.

(C,, is poly(n)-time computable from 1".)

* Is P = P/poly!?

Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*)-size circuit family {C }. . such that

xeL e»C (x) =1, wheren = |x|.

(C,, is poly(n)-time computable from 1".)

 Is P = P/poly? No! P/poly contains undecidable
languages.

Class P/poly

o Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

* Notation. #(M,y) = number corresponding to the
binary string (M,y).

o Let UHALT = {I*™M¥) . (M,y) € HALT}.Then, UHALT
is also an undecidable language.

Class P/poly

o Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

* Notation. #(M,y) = number corresponding to the
binary string (M,y).

o Let UHALT = {I*™M¥) . (M,y) € HALT}.Then, UHALT
is also an undecidable language.

e Obs. Any unary language is in P/poly. ()
Hence, P & P/poly .

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©(), We don’t require that
C,, is poly-time computable from ™.

Class P/poly

* What makes P/po
L € P/poly im
family {C_}, where

y contain undecidable languages?
vlies that L is decided by a circuit

C.| = n®(), We don’t require that

C,, is poly-time computable from ™.

* P/poly is a non-uniform class as a language in this class

is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class

as a language in this class has one

algorithm for all inputs.

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©(), We don’t require that
C,, is poly-time computable from ™.

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class as a language in this class has one

algorithm for all inputsl Hardware Software

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©(), We don’t require that
C,, is poly-time computable from ™.

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

* P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT € P/poly? In other words, is NP & P/poly!?

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=>,.

» Proof. We’ll show that NP & P/poly implies [], =) ,.
It’s sufficient to show that [], €),.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=>,.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L #mvu, € {0,1390<) Jy, € {0, 1}90:) M(x,u,, u,) = I.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L ®»vu, € {0,139 Ju, € {0,1390x) M(x,u;, u,) = I.

e Goal. Come up with a polynomial function p(.) and a
poly-time TM N s.t.

x € L e 3v, € {0,1}PX) vy, € {0,1}PX) N(x,u,, u,) = 1.
e Think about designing sucha TM N.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L #vu, € {0,1}9x) 3u, € {0, 1}190D p(x,u “/u:) = 1.

e If M runs in time T(n) = n®" on (x,u,, u,), where |x|
= n, then |¢| = O(T(n)?). Let m = #(bits to write).

e N can compute ¢ from M in poly(|x|) time.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L #vu, € {0,1}9x) 3u, € {0, 1}190D p(x,u “/u:) = 1.

e If M runs in time T(n) = n®" on (x,u,, u,), where |x|
= n, then |§| = O(T(n)?). Let m = length of ¢ .

e N can compute ¢ from M in poly(|x|) time.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M

s.t.
x € L ey, € {0,100 o, € 0,190 gxu, D

®(x,u,, u,) as a function of uj is
satisfiable. Wlog ¢ is a CNF (why?).

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

e By assumption, SAT € P/poly, i.e., there’s a circuit C,|
of size p(m) = m©() that correctly decides satifiability
of all input circuits ¢ of length m.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

e First attempt. A), statement to capture membership
of strings in L.

x € L «m3C_€ {0,1}PM vy, € {0,1}9) C_(d(x,u,, u,))=1.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

e First attempt. A), statement to capture membership
of strings in L.

x € L «m3C_€ {0,1}PM vy, € {0,1}9) C_(d(x,u,, u,))=1.

* Wrong! Think about a C_ that always outputs |I.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

e First attempt. A), statement to capture membership
of strings in L.

x € L «m3C_€ {0,1}PM vy, € {0,1}9) C_(d(x,u,, u,))=1.

* Need to be sure that C_ is the right circuit.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=>,.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

o If there’s a circuit C_, of size m®() that correctly
decides satifiability of all input circuits ¢ of length m,
then by self-reducibility of SAT, there’s a multi-output
circuit D of size r(m) = m©() that outputs a
satisfying assignment for input ¢ if @ € SAT. (Homework)

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.
» A), statement to capture membership in L.
XxXEL =
3D, € {0,1}™ vu, € {0,1}9) ¢(x,u,, I?m(cl)(x,u,, uz)l) = I.
|

assighment to the u, variables

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

» A), statement to capture membership in L.
XxXEL =
3D_€ {0,1}'™M vu, € {0, 1}alx) (1)(x,u,, D..(d(x,u,, u,)) = I.,

|
Can be checked by a poly-time TM N.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L #vu, € {0,1}9D ¢(x,u,,u,) € SAT.

» A), statement to capture membership in L.
XxXEL =
3D, € {0,1}™ vu, € {0,1}9x) N(x,D,,u) = 1.

Karp-Lipton theorem

o Theorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* If we can show NP & P/poly assuming P # NP , then
NP ¢ Plpoly @» P #NP.

e Karp-Lipton theorem shows NP & P/poly assuming
the stronger statement PH # 5,

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly?

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Follows from a counting argument.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* Number of bits required to write the adjacency lists
it at most s(log s + 3) + 4(s + n) = 9s.log s .

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

e Number of circuits of size s is at most 3s.27slogs |

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

e Number of circuits of size s is at most 2!!slogs

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* Number of circuits of size s is at most exp(2"').

* Number of functions in n variables is exp(2").

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many. Let exp(m) = 2™,

o |- exp(-2"") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

e So, circuits of size s can compute at most exp(-2"')
fraction of all Boolean functions on n variables.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP?

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides L(1{0,1}" requires 5n — o(n) many A and
V gates.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides L(1{0,1}" requires 5n — o(n) many A and
V gates. t

Results of this kind are known as
circuit lower bound.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly!? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

° Prove that NEXP & P/poly .

Lower bounds for restricted circuits

e Nevertheless, the clean combinatorial structure of a

circuit has been used to prove lower bounds for
some natural classes of circuits.

* The proofs of these lower bounds introduced and
developed some highly interesting techniques.

Lower bounds for restricted circuits

e Nevertheless, the clean combinatorial structure of a

circuit has been used to prove lower bounds for
some natural classes of circuits.

* The proofs of these lower bounds introduced and
developed some highly interesting techniques.

° PARITY (x|, x5, ..., X,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a

circuit has been used to prove lower bounds for
some natural classes of circuits.

* The proofs of these lower bounds introduced and
developed some highly interesting techniques.

° (Khrapchenko ~ 1971) Any formula
computing PARITY(x, x5, ..., x,) has size Q(n?).

Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a

circuit has been used to prove lower bounds for
some natural classes of circuits.

* The proofs of these lower bounds introduced and
developed some highly interesting techniques.

o (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size Q(n3-°()).

Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a

circuit has been used to prove lower bounds for
some natural classes of circuits.

* The proofs of these lower bounds introduced and
developed some highly interesting techniques.

o There’s a f that can be computed by a
O(n)-size circuit such that any formula computing f
has size n®() .

An interesting approach was given by
Karchmer, Raz & Wigderson (1995) .

LB for AC° and monotone circuits

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

* The proofs of these lower bounds introduced and
developed some highly interesting techniques.

» We’'ll discuss lower bounds for constant depth
circuits and monotone circuits in the next 2 lectures.

Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ 2 | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

e Theorem.There’sa constantd = | s.t.if T;: N— N &
T,:N —=N and T,(n) £ d"'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T(n)) & SIZE(T,(n)).

Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ 2 | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

e Theorem.There’sa constantd = | s.t.if T;: N—= N &
T,:N —=N and T,(n) £ d"'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T,(n)) & SIZE(T,(n)).

* Proof. Uses Shanon’s result and a counting argument.

(Homework)

Class NC' and AC

Class NC

* NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC'if there is a
polynomial function q(.) and a constant c s.t. L is

decided by a q(n)-size circuit family {C, } cn, Where
depth of C, is at most c.(log n)' for every neN.

o NC =uU NC.
ieEN

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o Definition. For iEN, a language L is in NC! if there is a
polynomial function g(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C, } cn, Where
depth of C, is at most c.(log n)' for every neN.

e Definition. NC = U NC.
ieEN

e Homework: PARITY is in NC!.

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC'if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C, } cn, Where
depth of C, is at most c.(log n)' for every neN.

o NC =uU NC.
ieEN

» NC! = poly(n)-size Boolean formulas. (Assignment)

Class NC

* NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC'if there is a
polynomial function q(.) and a constant c s.t. L is

decided by a q(n)-size circuit family {C, } cn, Where
depth of C, is at most c.(log n)' for every neN.

 Further, L is in log-space uniform NC' if C_ is implicitly
log-space computable from |".

Sometimes NC! is defined as
log-space uniform NC'.

Class NC

* NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC'if there is a
polynomial function q(.) and a constant c s.t. L is

decided by a q(n)-size circuit family {C, } cn, Where
depth of C, is at most c.(log n)' for every neN.

 Further, L is in log-space uniform NC' if C_ is implicitly
log-space computable from |".

log-space uniform NC C P .

NC = Efficient parallel computation

° A language L can be decided efficiently in
pardllel if there’s a polynomial function q(.) and
constants ¢ & i s.t. L(1{0,1}" can be decided using q(n)
many processors in c.(log n)' time.

NC = Efficient parallel computation

° A language L can be decided efficiently in
pardllel if there’s a polynomial function q(.) and
constants ¢ & i s.t. L(1{0,1}" can be decided using q(n)
many processors in c.(log n)' time.

e Assumptions on the parallel computation model:

» A processor can deliver a message to any other
processor in O(log n) time.

> A processor has O(log n) bits of memory and
performs a poly-time computation at every step.

> Processor computation steps are synchronized.

NC = Efficient parallel computation

° A language L can be decided efficiently in
pardllel if there’s a polynomial function q(.) and
constants ¢ & i s.t. L(1{0,1}" can be decided using q(n)
many processors in c.(log n)' time.

° A language L is in NC if and only if L
can be decided efficiently in parallel.

* Proof. Almost immediate from the assumptions on
the parallel computation model.

Class AC

o For iENU{0},a language L is in AC! if there

is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_},cn, Where depth of C_ is at most c.(log n)!
for every neN.

o AC = U AC! (stands for Alternating Class)

i=20

Class AC

o Definition. For iENU{0},a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_},cn, Where depth of C_ is at most c.(log n)!
for every neN.

e Definition.AC = U AC.

i=20

e Observation. AC € NCi*! € AC*! forall i = 0.

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Class AC

o Definition. For iENU{0},a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_},cn, Where depth of C_ is at most c.(log n)!
for every neN.

e Definition.AC = U AC.

i=20

e Observation. NC =AC.

Class AC

o For iENU{0},a language L is in AC! if there

is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_},cn, Where depth of C_ is at most c.(log n)!
for every neN.

° AC = U AC.

i=20

e |In the next lecture, we’ll show that PARITY is not in
ACY i.e., ACY < NCI.

Class AC

o For iENU{0},a language L is in AC! if there

is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C, },cn, Where depth of C is at most c.(log n)'
for every neN.

° AC = U AC.

i=20

 Further, L is in log-space uniform AC' if C_ is implicitly
log-space computable from |".

log-space uniform ACC P .

P-completeness

P-completeness

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

ls P = (uniform) NC? Is P = L?...use log-space
reduction!

o A language L € P is P-complete if for every
L'inP,L <L

P-complete problems

e Circuit value problem. Given a circuit and an input,

compute the output of the circuit. (The reduction in the
Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system

of linear inequality constraints over rationals.
(Assighment problem)

» CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

No log-space algo for PC problems

e Theorem. Let L be a P-complete language.Then,
LisinL @& P=L
e Proof. Easy.

e Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

No parallel algo for PC problems

e Theorem. Let L be a P-complete language.Then,
Lisin NC & P C NC.
* Proof. = direction is straightforward.

e Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P € NC.

No parallel algo for PC problems

e [heorem. Let L be a P-complete language.Then,
_isin NC & P C NC.
° Proof.(=») Let L' € PAs L is P-complete, L <, L.

Size = poly(n)
Depth = poly(log n)

v
m = poly(n)

x € {0,1}" x € {0,1}"
Isx € L2

No parallel algo for PC problems

e Theorem.

* Proof.(=»)

et L be a P-complete language.Then,
_isin NC & P C NC.

et L € PAs L is P-complete, L <, L.

Size = poly(n)
Depth = poly(log n)

m = poly(n)

Need to replace
this by a NC ckt.

Parallelization of Log-space

* Do problems in L have efficient parallel algorithms?
Yes!

e Theorem. NL € (uniform) NC. (Assignment problem)

Parallelization of Log-space

* Do problems in L have efficient parallel algorithms?

o NL € (uniform) NC. (Assignment problem)
* Proof sketch.

e |. Construct the adjacency matrix A of the
configuration graph.

e 2. Use repeated squaring of A to find out if there’s a
path from start to accept configurations.

Complexity zoo

(uniform) NC

