Lower bounds for monotone circuits

B Pratheek Neha Jawalkar

December 27, 2020

Monotone circuits and functions

Monotone Circuit

A Boolean circuit is *monotone* if it contains only AND and OR gates, and no NOT gates.

Monotone circuits and functions

Monotone Circuit

A Boolean circuit is *monotone* if it contains only AND and OR gates, and no NOT gates.

Monotone Function

A function $f : \{0,1\}^n \to \{0,1\}$ is monotone if for every $x \leq y$, we have $f(x) \leq f(y)$. We denote $x \leq y$ if every bit that is 1 in x is also 1 in y.

Monotone circuits and functions

Monotone Circuit

A Boolean circuit is *monotone* if it contains only AND and OR gates, and no NOT gates.

Monotone Function

A function $f : \{0,1\}^n \to \{0,1\}$ is *monotone* if for every $x \leq y$, we have $f(x) \leq f(y)$. We denote $x \leq y$ if every bit that is 1 in x is also 1 in y.

Note that every monotone circuit computes a monotone function and every monotone function can be computed by a monotone circuit.

Cliques

Clique

A *clique* in a graph G = (V, E) is a subset of vertices of G, say C such that every pair of vertices in C are adjacent to each other.

History

- The first monotone circuit lower bound was shown by Razborav in 1985.
- It was improved upon by Andreev and further by Alon and Boppana. The result and proof we are going to see today is due to Alon and Boppana.
- Razborov, in another work in 1985 showed that the monotone circuit complexity is not polynomially related to the non-monotone circuit complexity.
- This was taken further by Eva Tardos who showed the existence of a language whose monotone circuit complexity is exponentially larger than its non-monotone circuit complexity.

Notations

- We have an undirected graph G with n vertices.
- Our goal is to study circuits that detect cliques of size k in G.
- The input to the circuit has $\binom{n}{2}$ bits and is of the form of $x_{\{i,j\}}$, where each bit is an indicator representing if there is an edge between node i and node j.

Theorem

CLIQUE

Denote by $CLIQUE_{k,n} : \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ the function that on input an adjacency matrix of an n-vertex graph *G* outputs 1 if and only if *G* contains a k-vertex clique.

Theorem

CLIQUE

Denote by $CLIQUE_{k,n} : \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ the function that on input an adjacency matrix of an n-vertex graph *G* outputs 1 if and only if *G* contains a k-vertex clique.

Theorem

There exists a constant ϵ such that for every $k \leq n^{1/4}$, there is no monotone circuit of size less than $2^{\epsilon\sqrt{k}}$ that computes $CLIQUE_{k,n}$.

High level idea

- A monotone circuit can be approximated well using an OR of Clique Indicators (a special kind of circuit for detecting cliques). We use the sunflower lemma to prove this.
- A circuit formed using a small number of Clique Indicators errs on input graphs of two specific varieties.

Distributions

Positive-test graphs

We call as *positive-test* graphs, graphs that are a exact k-clique with no other edges present.

Distributions

Positive-test graphs

We call as *positive-test* graphs, graphs that are a exact k-clique with no other edges present.

Negative-test graphs

We call as *negative-test* graphs, graphs generated by the following procedure: choose a function $c : [n] \rightarrow [k-1]$ at random, and place and edge between u and v, if $c(u) \neq c(v)$.

Approximators

Clique Indicators

A clique indicator (CI) for a set $X \subseteq [n]$, is Boolean function, that on input graph *G* returns 1 if *X* is a clique in *G*, and 0 otherwise. A clique indicator for *X* is denoted by, $\lceil X \rceil$

Approximators

Clique Indicators

A clique indicator (CI) for a set $X \subseteq [n]$, is Boolean function, that on input graph *G* returns 1 if *X* is a clique in *G*, and 0 otherwise. A clique indicator for *X* is denoted by, $\lceil X \rceil$

Approximator

An approximator is a disjunction (OR) of at most m clique indicators. An approximator A can be expressed as,

$$A = \bigvee_{i=1}^m \lceil X_i \rceil$$

Sunflower Lemma

Sunflower

A collection of sets z_1, \ldots, z_p , is called a sunflower if the pairwise intersection of any two of the sets is always constant.

Sunflower Lemma

Sunflower

A collection of sets z_1, \ldots, z_p , is called a sunflower if the pairwise intersection of any two of the sets is always constant.

If z_1, \ldots, z_p is a sunflower, then there exists a set z_0 such that

$$z_0 = z_i \cap z_j, \quad \forall i \neq j$$

The intersection is called the center or core of the sunflower, and the sets z_i , $i \neq 0$ are called petals of the sunflower.

Sunflower Lemma

Sunflower

A collection of sets z_1, \ldots, z_p , is called a sunflower if the pairwise intersection of any two of the sets is always constant.

If z_1, \ldots, z_p is a sunflower, then there exists a set z_0 such that

$$z_0 = z_i \cap z_j, \quad \forall i \neq j$$

The intersection is called the center or core of the sunflower, and the sets z_i , $i \neq 0$ are called petals of the sunflower.

Sunflower Lemma

If Z is a collection of sets, each of size at most I. If $|Z| > (p-1)^{I}I!$, for some p > 1, then Z contains a sunflower with p petals.

Sunflower Lemma

Image credits: Extremal Combinatorics by Stasys Jukna

Let C be a monotone circuit. Let s be the size of the circuit C.

Let C be a monotone circuit. Let s be the size of the circuit C.

Approximator for C, call it C' is constructed as follows. Our aim is to get an approximator for C made of at most m clique indicators.

- Let C be a monotone circuit. Let s be the size of the circuit C.
- Approximator for C, call it C' is constructed as follows. Our aim is to get an approximator for C made of at most m clique indicators.
- Traverse the circuit C such that the inputs to a particular node are considered for approximation before the node itself is approximated.

- Let C be a monotone circuit. Let s be the size of the circuit C.
- Approximator for C, call it C' is constructed as follows. Our aim is to get an approximator for C made of at most m clique indicators.
- Traverse the circuit C such that the inputs to a particular node are considered for approximation before the node itself is approximated.
- This can be achieved by ordering the gates in *C*. The circuit *C* can be viewed as a sequence of *s* monotone function (one per gate), c_1, \ldots, c_s . Each c_i is either an input node, or it is either an AND or OR of two other nodes, c_a and c_b such that a, b < i.

Each approximator is made up of at most m clique indicators, each clique indicator of size at most l.

Each approximator is made up of at most m clique indicators, each clique indicator of size at most l.

For the sunflower lemma to work, we must have l, p and m set appropriately.

Each approximator is made up of at most m clique indicators, each clique indicator of size at most l.

For the sunflower lemma to work, we must have *l*, *p* and *m* set appropriately. We set $l = \sqrt{k}$, $p = 10\sqrt{k}logn$, and $m = (p - 1)^{l}l!$.

Each approximator is made up of at most m clique indicators, each clique indicator of size at most l.

For the sunflower lemma to work, we must have *I*, *p* and *m* set appropriately. We set $I = \sqrt{k}$, $p = 10\sqrt{k}logn$, and $m = (p - 1)^{I}I!$.

There are three possibilities for any node.

- Leaf node
- AND gate
- OR gate

Case 1: Leaf node.

Case 1: Leaf node.

The node being approximated, call it c, is a leaf node.

Case 1: Leaf node.

The node being approximated, call it c, is a leaf node.

In this case, the approximator for c, is the input at node itself.

Case 2: OR gate

Case 2: OR gate

The node being approximated, $c = c_a \vee c_b$. Let $A = \bigvee_{i=1}^{m} \lceil X_i \rceil$ and $B = \bigvee_{i=1}^{m} \lceil Y_i \rceil$ be the approximation of c_a and c_b respectively.

Case 2: OR gate

The node being approximated, $c = c_a \vee c_b$. Let $A = \bigvee_{i=1}^{m} \lceil X_i \rceil$ and $B = \bigvee_{i=1}^{m} \lceil Y_i \rceil$ be the approximation of c_a and c_b respectively.

The approximator for c be $A \sqcup B$

 $\bigvee_{i=1}^m [X_i] \vee \bigvee_{i=1}^m [Y_i]$

Case 2: OR gate

The node being approximated, $c = c_a \vee c_b$. Let $A = \bigvee_{i=1}^{m} \lceil X_i \rceil$ and $B = \bigvee_{i=1}^{m} \lceil Y_i \rceil$ be the approximation of c_a and c_b respectively.

The approximator for c be $A \sqcup B$

$$\bigvee_{i=1}^m \lceil X_i \rceil \lor \bigvee_{i=1}^m \lceil Y_i \rceil$$

If the number of distinct clique indicators in the approximation for c is less than m, we are done. Else, find a sunflower in the set of clique indicators and replace the p sunflower petals with the core. Repeat till the number of clique indicators is less or equal to m.

Case 3: AND gate

Case 3: AND gate

The node being approximated, $c = c_a \wedge c_b$. Let $A = \bigvee_{i=1}^{m} \lceil X_i \rceil$ and $B = \bigvee_{i=1}^{m} \lceil Y_i \rceil$ be the approximation of c_a and c_b respectively.

Case 3: AND gate

The node being approximated, $c = c_a \wedge c_b$. Let $A = \bigvee_{i=1}^{m} \lceil X_i \rceil$ and $B = \bigvee_{i=1}^{m} \lceil Y_i \rceil$ be the approximation of c_a and c_b respectively.

The approximator for c be $A \sqcap B$

 $\bigvee_{i=1}^{m}\bigvee_{j=1}^{m}\lceil X_{i}\cup Y_{j}\rceil$

Case 3: AND gate

The node being approximated, $c = c_a \wedge c_b$. Let $A = \bigvee_{i=1}^{m} [X_i]$ and $B = \bigvee_{i=1}^{m} [Y_i]$ be the approximation of c_a and c_b respectively.

The approximator for c be $A \sqcap B$

 $\bigvee_{i=1}^{m}\bigvee_{j=1}^{m} \lceil X_{i}\cup Y_{j}\rceil$

Discard any clique indicator, $\lceil X_i \cup Y_j \rceil$ with $|X_i \cup Y_j| > I$. If there are more that *m* distinct clique indicators then find a sunflower in the set of clique indicators and replace the sunflower petals with the core. Repeat till the number of clique indicators is less or equal to m.

Next steps

- Subgoal-1: Show that any approximator C' either makes a lot of errors (outputs 0) on positive test graphs, or makes a lot of errors (outputs 1) on negative test graphs.
- Subgoal-2: Bound the number of mistakes C' makes on positive and negative test graphs. Since C is always correct on both positive and negative test graphs, the mistakes C' makes must be explained away by the errors of approximation. We show that that this implies that C must be large.

Subgoal-1

Lemma 1

Let $A = \bigvee_{i=1}^{m'} \lceil X_i \rceil$ be an approximator. Then either (i) A outputs 0 on all graphs or (ii) A outputs 1 (accepts) more than $\left(1 - \frac{\binom{l}{2}}{k-1}\right)(k-1)^n$ negative test graphs.

Subgoal-1

Lemma 1

Let $A = \bigvee_{i=1}^{m'} \lceil X_i \rceil$ be an approximator. Then either (i) A outputs 0 on all graphs or (ii) A outputs 1 (accepts) more than $\left(1 - \frac{\binom{l}{2}}{k-1}\right)(k-1)^n$ negative test graphs.

Proof. If m' = 0, then A is the empty disjunction (in other words, 0). If $m' \ge 1$, consider just some $\lceil X_j \rceil$, $|X_j| \le l$. $\lceil X_j \rceil$ rejects a negative test graph iff it has no clique on X_j . The number of negative test graphs that have no clique on X_j is at most $\binom{|X_j|}{2}(k-1)^{n-1}$ (counting). The bound follows.

Bounding error: strategy

Lemma

The number of false negatives (positives) generated by C' (relative to C) is at most $\sum_{i=1}^{size(C)} e_i$, where e_i is number of false negatives (positives) generated by the approximator of gate *i* relative to gate *i*.

Proof. By induction.

- Base case. Replacing input gates introduces no error.
- Assume that everything until gate (i − 1) has been replaced by approximators. Also assume the inductive hypothesis holds, i.e. the number of false negatives produced by the intermediate circuit C_{i−1} is ≤ ∑_{j=1}^{i−1} e_j. Now replace gate i by the corresponding approximator.

Bounding error: strategy

- The resulting circuit C_i will produce a 0 when C_{i-1} produces a 1 only when the approximator of gate *i* produces a 0 when gate *i* produces a 1.
- This is because the outputs of of gate *i* and its approximator are being pushed into a monotone circuit (gates are replaced bottom up, so everything above gate *i* is yet to be approximated).
- Thus the number of false negatives being generated by C_i (relative to C) is at most the number of false negatives generated by C_{i-1} relative to C plus the number of false negatives generated by the approximator of gate i relative to i. This completes the proof.

Lemma 2

The number of false negatives generated by C' relative to C on positive test graphs is at most $size(C)m^2\binom{n-l-1}{k-l-1}$.

Proof. We'll show that each gate of C contributes no more than $m^2 \binom{n-l-1}{k-l-1}$ false negatives on positive test graphs.

- Input gates. Here the approximation introduces no error.
- \lor gates.
 - 1. The disjunction of a sunflower has the same truth value as the center (empty center gets value 1).

- \wedge gates.
 - 1. Going from $[X_i] \land [Y_i]$ to $[X_i \cup Y_i]$ does not introduce false negatives on positive test graphs.

 - $\begin{bmatrix} X_i \end{bmatrix} = 1 \implies X_i \subseteq K \\ \hline [Y_j] = 1 \implies Y_j \subseteq K \\ \hline \text{Together, these imply that } X_i \cup Y_i \subseteq K. \\ \hline X_i \cup Y_i \subseteq K \implies [X_i \cup Y_j] = 1$
 - 2. However, discarding sets of large cardinality might introduce false negatives. We bound this number as follows: let $|X_i \cup Y_i| = l' > l$. Then discarding $\lceil X_i \cup Y_j \rceil$ introduces at most $\binom{n-l'}{k-l'} \leq \binom{n-(l+1)}{k-(l+1)}$ false negatives on positive test graphs. The bound follows from the fact that there are at most $m^2 [X_i \cup Y_i]$.

Lemma 3

The number of false positives generated by C' relative to C on negative test graphs is at most $size(C)m^2\left(\frac{\binom{l}{2}}{k-1}\right)^p(k-1)^n$.

Proof. The argument is similar to the last lemma.

- Input gates. No error.
- At ∨ gates, replacing sunflowers by their center might introduce false positives. We bound this number as follows (on negative test graphs):
- Let z_1, \ldots, z_p be a sunflower.

- We want to bound the number of negative test graphs rejected by $\bigvee_{i=1}^{p} \lceil z_i \rceil$, but accepted by $\lceil z_0 \rceil$, where z_0 is the center of the sunflower.
- Argue using counting. For every petal, pick a pair of vertices that collide (are assigned the same value under c). This yields at most $\binom{l}{2}$ choices per petal, and $\binom{l}{2}^{p}$ choices for p petals.
- Assign values to all the vertices. This can be done in $(k-1)^{n-p}$ ways (since there are p pairs of colliding vertices and we pick only one value for each colliding pair).
- Thus a single sunflower contributes at most $\binom{l}{2}^{p}(k-1)^{n-p}$ false positives.
- There can be at most 2m sunflowers per \lor gate (since there are at most 2m clique indicators), so an \lor gate contributes at most $2m {\binom{l}{2}}^{p} (k-1)^{n-p}$ false positives.

- \wedge gates.
 - 1. $[X_i] \land [Y_j]$ going to $[X_i \cup Y_j]$ will not introduce false positives.
 - 2. Discarding $\lceil X_i \cup Y_j \rceil$, $|X_i \cup Y_j| > I$ will not introduce false positives since we are discarding clauses from a disjunction.
 - 3. Replacing sunflowers by their center might introduce false positives, but

this number has been bounded. It is $\leq m^2 \left(\frac{\binom{\prime}{2}}{k-1}\right)^p (k-1)^n$.

Putting it all together

Theorem

There exists a constant ϵ such that for every $k \leq n^{1/4}$, there is no monotone circuit of size less than $2^{\epsilon\sqrt{k}}$ that computes $CLIQUE_{k,n}$.

Let *C* be a circuit for
$$CLIQUE_{n,k}$$
.
Let $I = \sqrt{k}$, $p = \lceil 10k logn \rceil$, $m = (p - 1)^{I} I!$.

By Lemma 1, we have two possible situations:

1. C' rejects all positive test graphs. In this case

$$\binom{n}{k} \leq size(C)m^2\binom{n-l-1}{k-l-1}$$

2. C' accepts at least $\left(1-\frac{\binom{l}{2}}{k-1}\right)(k-1)^n$ negative test graphs. Then

$$\left(1-rac{\binom{l}{2}}{k-1}\right)(k-1)^n\leq size(C)m^2\binom{n-l-1}{k-l-1}$$

Algebra for situation 1

$$m = (p-1)^{l} l! = (p-1)^{\sqrt{k}} (\sqrt{k})!$$

$$\leq (10\sqrt{k} \log n)^{\sqrt{k}} \sqrt{k}^{\sqrt{k}}$$

$$= k^{\sqrt{k}} (10 \log n)^{\sqrt{k}}$$

$$\binom{n}{k} \leq size(C)m^2\binom{n-l-1}{k-l-1}$$

$$\frac{\binom{n}{k}}{\binom{n-l-1}{k-l-1}} = \frac{n}{k} \frac{n-1}{k-1} \cdots \frac{n-l}{k-l} \ge \left(\frac{n-\sqrt{k}}{k}\right)^{\sqrt{k}}$$

Algebra for situation 1

$$m^2 \leq k^{2\sqrt{k}} (10 \log n)^{2\sqrt{k}}$$

Therefore,

$$size(C) \ge \left(rac{n-\sqrt{k}}{k}
ight)^{\sqrt{k}} rac{1}{k^{2\sqrt{k}}(10\log n)^{2\sqrt{k}}}$$

$$size(C) \geq rac{(n-\sqrt{k})^{\sqrt{k}}}{k^{3\sqrt{k}}(10\log n)^{2\sqrt{k}}}$$

_

Algebra for situation 1

Since $k \leq n^{1/4}$, we have

$$size(C) \ge rac{(n-\sqrt{k})^{\sqrt{k}}}{n^{3/4\sqrt{k}} \left(10 \log n\right)^{2\sqrt{k}}}$$

Algebra for situation 2

In the other situation, we have

$$\left(1-rac{\binom{l}{2}}{k-1}
ight)(k-1)^n\leq size(C)m^2\left(rac{\binom{l}{2}}{k-1}
ight)^p(k-1)^n$$

Since $I = \sqrt{k}$,

$$\frac{\binom{l}{2}}{k-1} < \frac{1}{2}$$

$$\textit{size}(\textit{C})\textit{m}^2\frac{1}{2^p} \geq \frac{1}{2}$$

Hence,

$$size(C) \ge \frac{2^{p-1}}{m^2} \ge \frac{2^{10\sqrt{k}\log n}}{k^{2\sqrt{k}} (20\log n)^{2\sqrt{k}}} = \frac{n^{10\sqrt{k}}}{n^{\sqrt{k}/2} (20\log n)^{2\sqrt{k}}}$$