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Monotone circuits and functions

Monotone Circuit
A Boolean circuit is monotone if it contains only AND and OR gates, and
no NOT gates.

Monotone Function
A function f : {0, 1}n → {0, 1} is monotone if for every x � y , we have
f (x) ≤ f (y). We denote x � y if every bit that is 1 in x is also 1 in y .

Note that every monotone circuit computes a monotone function and
every monotone function can be computed by a monotone circuit.



Background Theorem Proof

Monotone circuits and functions

Monotone Circuit
A Boolean circuit is monotone if it contains only AND and OR gates, and
no NOT gates.

Monotone Function
A function f : {0, 1}n → {0, 1} is monotone if for every x � y , we have
f (x) ≤ f (y). We denote x � y if every bit that is 1 in x is also 1 in y .

Note that every monotone circuit computes a monotone function and
every monotone function can be computed by a monotone circuit.



Background Theorem Proof

Monotone circuits and functions

Monotone Circuit
A Boolean circuit is monotone if it contains only AND and OR gates, and
no NOT gates.

Monotone Function
A function f : {0, 1}n → {0, 1} is monotone if for every x � y , we have
f (x) ≤ f (y). We denote x � y if every bit that is 1 in x is also 1 in y .

Note that every monotone circuit computes a monotone function and
every monotone function can be computed by a monotone circuit.



Background Theorem Proof

Cliques

Clique
A clique in a graph G = (V ,E ) is a subset of vertices of G , say C such that
every pair of vertices in C are adjacent to each other.
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History

The first monotone circuit lower bound was shown by Razborav in 1985.
It was improved upon by Andreev and further by Alon and Boppana.
The result and proof we are going to see today is due to Alon and
Boppana.
Razborov, in another work in 1985 showed that the monotone cir-
cuit complexity is not polynomially related to the non-monotone circuit
complexity.
This was taken further by Eva Tardos who showed the existence of
a language whose monotone circuit complexity is exponentially larger
than its non-monotone circuit complexity.
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Notations

We have an undirected graph G with n vertices.
Our goal is to study circuits that detect cliques of size k in G .
The input to the circuit has

(n
2
)

bits and is of the form of x{i ,j}, where
each bit is an indicator representing if there is an edge between node i
and node j .
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Theorem

CLIQUE

Denote by CLIQUEk,n : {0, 1}(
n
2) → {0, 1} the function that on input an

adjacency matrix of an n-vertex graph G outputs 1 if and only if G contains
a k-vertex clique.

Theorem
There exists a constant ε such that for every k ≤ n1/4, there is no monotone
circuit of size less than 2ε

√
k that computes CLIQUEk,n.
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√
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High level idea

A monotone circuit can be approximated well using an OR of Clique
Indicators (a special kind of circuit for detecting cliques). We use the
sunflower lemma to prove this.
A circuit formed using a small number of Clique Indicators errs on input
graphs of two specific varieties.
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Distributions

Positive-test graphs
We call as positive-test graphs, graphs that are a exact k-clique with no
other edges present.

Negative-test graphs
We call as negative-test graphs, graphs generated by the following proce-
dure: choose a function c : [n] → [k − 1] at random, and place and edge
between u and v , if c(u) 6= c(v).
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Approximators

Clique Indicators
A clique indicator (CI) for a set X ⊆ [n], is Boolean function, that on input
graph G returns 1 if X is a clique in G , and 0 otherwise.
A clique indicator for X is denoted by, dXe

Approximator
An approximator is a disjunction (OR) of at most m clique indicators.
An approximator A can be expressed as,

A =
m∨

i=1
dXie
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Sunflower Lemma

Sunflower
A collection of sets z1, . . . , zp, is called a sunflower if the pairwise intersec-
tion of any two of the sets is always constant.

If z1, . . . , zp is a sunflower, then there exists a set z0 such that

z0 = zi ∩ zj , ∀i 6= j

The intersection is called the center or core of the sunflower, and the sets
zi , i 6= 0 are called petals of the sunflower.

Sunflower Lemma
If Z is a collection of sets, each of size at most l . If |Z | > (p − 1)l l!, for
some p > 1, then Z contains a sunflower with p petals.
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Sunflower Lemma

Image credits: Extremal Combinatorics by Stasys Jukna
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Construction

Let C be a monotone circuit. Let s be the size of the circuit C .

Approximator for C , call it C ′ is constructed as follows. Our aim is to get
an approximator for C made of at most m clique indicators.

Traverse the circuit C such that the inputs to a particular node are
considered for approximation before the node itself is approximated.

This can be achieved by ordering the gates in C . The circuit C can be
viewed as a sequence of s monotone function (one per gate), c1, . . . , cs .
Each ci is either an input node, or it is either an AND or OR of two other
nodes, ca and cb such that a, b < i .
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Construction

Each approximator is made up of at most m clique indicators, each clique
indicator of size at most l .

For the sunflower lemma to work, we must have l , p and m set
appropriately.
We set l =

√
k, p = 10

√
klogn, and m = (p − 1)l l!.

There are three possibilities for any node.
Leaf node
AND gate
OR gate
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Construction

Case 1: Leaf node.

The node being approximated, call it c, is a leaf node.

In this case, the approximator for c, is the input at node itself.
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Construction

Case 2: OR gate

The node being approximated, c = ca ∨ cb.
Let A =

m∨
i=1
dXie and B =

m∨
i=1
dYie be the approximation of ca and cb

respectively.

The approximator for c be A t B
m∨

i=1
dXie ∨

m∨
i=1
dYie

If the number of distinct clique indicators in the approximation for c is less
than m, we are done. Else, find a sunflower in the set of clique indicators
and replace the p sunflower petals with the core. Repeat till the number of
clique indicators is less or equal to m.
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Construction

Case 3: AND gate

The node being approximated, c = ca ∧ cb.
Let A =

m∨
i=1
dXie and B =

m∨
i=1
dYie be the approximation of ca and cb

respectively.
The approximator for c be A u B

m∨
i=1

m∨
j=1
dXi ∪ Yje

Discard any clique indicator, dXi ∪Yje with |Xi ∪Yj | > l . If there are more
that m distinct clique indicators then find a sunflower in the set of clique
indicators and replace the sunflower petals with the core. Repeat till the
number of clique indicators is less or equal to m.
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Next steps

Subgoal-1: Show that any approximator C ′ either makes a lot of errors
(outputs 0) on positive test graphs, or makes a lot of errors (outputs
1) on negative test graphs.
Subgoal-2: Bound the number of mistakes C ′ makes on positive and
negative test graphs. Since C is always correct on both positive and
negative test graphs, the mistakes C ′ makes must be explained away
by the errors of approximation. We show that that this implies that C
must be large.
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Subgoal-1

Lemma 1

Let A =
m′∨
i=1
dXie be an approximator. Then either

(i) A outputs 0 on all graphs or
(ii) A outputs 1 (accepts) more than

(
1− ( l

2)
k−1

)
(k−1)n negative test graphs.



Background Theorem Proof

Subgoal-1

Lemma 1

Let A =
m′∨
i=1
dXie be an approximator. Then either

(i) A outputs 0 on all graphs or
(ii) A outputs 1 (accepts) more than

(
1− ( l

2)
k−1

)
(k−1)n negative test graphs.

Proof. If m′ = 0, then A is the empty disjunction (in other words, 0). If
m′ ≥ 1, consider just some dXje, |Xj | ≤ l .
dXje rejects a negative test graph iff it has no clique on Xj . The number
of negative test graphs that have no clique on Xj is at most(|Xj |

2
)
(k − 1)n−1 (counting). The bound follows.
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Bounding error: strategy

Lemma
The number of false negatives (positives) generated by C ′ (relative to C)
is at most

∑size(C)
i=1 ei , where ei is number of false negatives (positives)

generated by the approximator of gate i relative to gate i .

Proof. By induction.
Base case. Replacing input gates introduces no error.
Assume that everything until gate (i −1) has been replaced by approx-
imators. Also assume the inductive hypothesis holds, i.e. the number

of false negatives produced by the intermediate circuit Ci−1 is ≤
i−1∑
j=1

ej .

Now replace gate i by the corresponding approximator.
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Bounding error: strategy

The resulting circuit Ci will produce a 0 when Ci−1 produces a 1 only
when the approximator of gate i produces a 0 when gate i produces a
1.
This is because the outputs of of gate i and its approximator are be-
ing pushed into a monotone circuit (gates are replaced bottom up, so
everything above gate i is yet to be approximated).
Thus the number of false negatives being generated by Ci (relative to
C) is at most the number of false negatives generated by Ci−1 relative
to C plus the number of false negatives generated by the approximator
of gate i relative to i . This completes the proof.



Background Theorem Proof

Subgoal-2, part i

Lemma 2
The number of false negatives generated by C ′ relative to C on positive test
graphs is at most size(C)m2(n−l−1

k−l−1
)
.

Proof. We’ll show that each gate of C contributes no more than
m2(n−l−1

k−l−1
)

false negatives on positive test graphs.
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Subgoal-2, part i

Input gates. Here the approximation introduces no error.
∨ gates.

1. The disjunction of a sunflower has the same truth value as the center
(empty center gets value 1).
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Subgoal-2, part i
∧ gates.

1. Going from dXie ∧ dYje to dXi ∪ Yje does not introduce false negatives
on positive test graphs.

dXie = 1 =⇒ Xi ⊆ K
dYje = 1 =⇒ Yj ⊆ K
Together, these imply that Xi ∪ Yi ⊆ K .
Xi ∪ Yi ⊆ K =⇒ dXi ∪ Yje = 1

2. However, discarding sets of large cardinality might introduce false neg-
atives. We bound this number as follows: let |Xi ∪ Yj | = l ′ > l . Then
discarding dXi ∪ Yje introduces at most

(n−l′

k−l′

)
≤
(n−(l+1)

k−(l+1)
)

false nega-
tives on positive test graphs. The bound follows from the fact that there
are at most m2 dXi ∪ Yje.
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Subgoal-2, part ii

Lemma 3
The number of false positives generated by C ′ relative to C on negative test

graphs is at most size(C)m2
(

( l
2)

k−1

)p

(k − 1)n.

Proof. The argument is similar to the last lemma.
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Subgoal-2, part ii

Input gates. No error.
At ∨ gates, replacing sunflowers by their center might introduce false
positives. We bound this number as follows (on negative test graphs):
Let z1, . . . , zp be a sunflower.
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Subgoal-2, part ii

We want to bound the number of negative test graphs rejected by
∨p

i=1dzie, but accepted by dz0e, where z0 is the center of the sunflower.
Argue using counting. For every petal, pick a pair of vertices that
collide (are assigned the same value under c). This yields at most

( l
2
)

choices per petal, and
( l

2
)p choices for p petals.

Assign values to all the vertices. This can be done in (k − 1)n−p ways
(since there are p pairs of colliding vertices and we pick only one value
for each colliding pair).
Thus a single sunflower contributes at most

( l
2
)p(k − 1)n−p false posi-

tives.
There can be at most 2m sunflowers per ∨ gate (since there are at most
2m clique indicators), so an ∨ gate contributes at most 2m

( l
2
)p(k −

1)n−p false positives.
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Subgoal-2, part ii

∧ gates.
1. dXie ∧ dYje going to dXi ∪ Yje will not introduce false positives.
2. Discarding dXi ∪Yje, |Xi ∪Yj | > l will not introduce false positives since

we are discarding clauses from a disjunction.
3. Replacing sunflowers by their center might introduce false positives, but

this number has been bounded. It is ≤ m2

(
( l

2)
k−1

)p

(k − 1)n.
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Putting it all together

Theorem
There exists a constant ε such that for every k ≤ n1/4, there is no monotone
circuit of size less than 2ε

√
k that computes CLIQUEk,n.

Let C be a circuit for CLIQUEn,k .
Let l =

√
k, p = d10klogne,m = (p − 1)l l!.

By Lemma 1, we have two possible situations:
1. C ′ rejects all positive test graphs. In this case(

n
k

)
≤ size(C)m2

(
n − l − 1
k − l − 1

)

2. C ′ accepts at least
(

1− ( l
2)

k−1

)
(k − 1)n negative test graphs. Then

(
1−

( l
2
)

k − 1

)
(k − 1)n ≤ size(C)m2

(
n − l − 1
k − l − 1

)
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Algebra for situation 1

m = (p − 1)l l! = (p − 1)
√

k(
√

k)!

≤ (10
√

klogn)
√

k √k
√

k

= k
√

k(10 log n)
√

k

(
n
k

)
≤ size(C)m2

(
n − l − 1
k − l − 1

)

(n
k
)(n−l−1

k−l−1
) = n

k
n − 1
k − 1 · · ·

n − l
k − l ≥

(
n −
√

k
k

)√k
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Algebra for situation 1

m2 ≤ k2
√

k(10 log n)2
√

k

Therefore,

size(C) ≥
(

n −
√

k
k

)√k
1

k2
√

k(10 log n)2
√

k

size(C) ≥ (n −
√

k)
√

k

k3
√

k(10 log n)2
√

k
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Algebra for situation 1

Since k ≤ n1/4, we have

size(C) ≥ (n −
√

k)
√

k

n3/4
√

k

(
10logn

)2
√

k
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Algebra for situation 2
In the other situation, we have(

1−
( l

2
)

k − 1

)
(k − 1)n ≤ size(C)m2

( ( l
2
)

k − 1

)p

(k − 1)n

Since l =
√

k,

( l
2
)

k − 1 <
1
2

size(C)m2 1
2p ≥

1
2

Hence,

size(C) ≥ 2p−1

m2 ≥
210
√

klogn

k2
√

k
(

20 log n
)2
√

k
= n10

√
k

n
√

k/2
(

20 log n
)2
√

k
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