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Sunflowers

Definition 1 (Sunflower)

A collection of sets S1, . . . ,Sr is an r -sunflower if

Si ∩ Sj = S1 ∩ · · · ∩ Sr , ∀i 6= j .

We call K = S1 ∩ · · · ∩ Sr the kernel and S1 \ K , . . . ,Sr \ K the
petals of the sunflower.
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Sunflowers

Figure: A 3-sunflower2

2Lovett 2020.
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Sunflower Lemma

Erdős and Rado proved that large enough set systems must
contain a sunflower.

Lemma 1 (Sunflower lemma3)

Let r ≥ 3 and F be a w -set system of size |F| ≥ w ! · (r − 1)w .
Then F contains an r -sunflower.

They conjectured in the same paper that the bound in Lemma 1
can be drastically improved.

Conjecture 1 (Sunflower conjecture)

Let r ≥ 3. There exists c = c(r) such that any w -set system F of
size |F| ≥ cw contains an r -sunflower.

3Erdős and Rado 1960.
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Progress over the Years

The bound in Lemma 1 is of the form ww(1+o(1)) where the o(1)
depends on r . Despite nearly 60 years of research, the best known
bounds were still of the form ww(1+o(1)), even for r = 3.

Kostochka4 proved that any w -set system of size
|F| ≥ cw ! · (log log logw/ log logw)w must contain a
3-sunflower for some absolute constant c .

Fukuyama5 claimed an improved bound of w (3/4+o(1))w for
r = 3, but this proof has not been verified.

4Kostochka 1997.
5Fukuyama 2018.
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Main Result

In 2019 Ryan Alweiss, Shachar Lovett, Kewen Wu and Jiapeng
Zhang vastly improved this bound. They proved that any w -set
system of size (logw)w(1+o(1)) must contain a sunflower. More
precisely:

Theorem 2 (Main theorem6)

Let r ≥ 3. For some constant C , any w -set system F of size
|F| ≥ (Cr3 logw log logw)w contains an r -sunflower.

6Alweiss et al. 2020.
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Follow up Works

The bound they obtained was of the form
(r · logw)w (log log q)O(w)

this was improved to (cr · logw)w by Frankston, Kahn,
Narayanan, Park7.

a simplified proof using information theory was given by Anup
Rao8.

An alternate proof using information theory was given by
Terry Tao9.

7Frankston et al. 2019.
8Rao 2020.
9Tao 2020.
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Notation

In this section we shall introduce some structures and their
generalizations that are used in the proof.

Link of a set system.

Spreadness of a set system (& Weighted spread system).

satisfying set systems.

sunflowers → robust sunflowers.
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Link

Definition 1

Given a set system F on X and a set T ⊂ X , the link of F at T is

FT = {S \ T : S ∈ F ,T ⊂ S}.

Example:

F = {{1, 2}, {2, 3, 4}, {1, 3, 5}, {2, 3, 6}, {3, 5, 7}}

F{1} = {{2}, {3, 5}}

F{2,3} = {{4}, {6}}
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Link

Definition 1

Given a set system F on X and a set T ⊂ X , the link of F at T is

FT = {S \ T : S ∈ F ,T ⊂ S}.

Observation: If FT contains a r-sunflower, then F contains a
r-sunflower.

S1\T , S2\T , S3\T sunflower =⇒ S1,S2, S3 sunflower

12 / 48



Spread Set Systems

Definition 2 (Spreadness,10)

We say that a w -set system is κ-spread if |F| ≥ κw and
|FT | ≤ κ−|T ||F| for all non-empty T , where |FT | is the size of the
link at T .

Note that, if F is a w -set system of size |F| ≥ κw on a ground set
X . Then either F is κ-spread, or there is a link FT of size
|FT | ≥ κw−|T |. Going forward we shall refer to the former as the
“pseudorandom case” and the latter as the “structured case”.

10Lovett, Solomon, and Zhang 2019.
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Spread Weighted Set Systems

Definition 3 (Weighted set system)

Let F be a set system, and let σ : F 7→ Q≥0 be a weight function
that assigns nonnegative rational weights to sets in F which are
not all 0. We call the pair (F , σ) a weighted set system.

For a subset F ′ ⊂ F we write σ(F ′) =
∑

S∈F ′ σ(S) for the sum of
the weights of the sets in F ′.

Definition 4 (Spread weighted set system)

Let s = (s0; s1, . . . , sw ) be a weight profile. A weighted set system
(F , σ) is s-spread if

1 σ(F) ≥ s0;

2 σ(FT ) ≤ s|T | for any link FT with non-empty T .

In particular, F is a w -set system.
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Satisfying Set Systems

Now, we define a more “robust” version of the property of having
disjoint sets. Given a finite set X , we denote by U(X , p) the
distribution over subsets R ⊂ X , where each element x ∈ X is
included in R independently with probability p (i.e. p-biased
inputs).

Definition 5 (Satisfying set system)

Let 0 < α, β < 1. A set system F on X is (α, β)-satisfying if

Pr
R∼U(X ,α)

[∃S ∈ F ,S ⊂ R] > 1− β.
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Satisfying Set Systems

The explanation for the name “satisfying” is that if the set system
is interpreted as a disjunctive normal form (DNF) formula, then
this condition is that the formula has more than a 1− β probability
of being satisfied on α-biased inputs.

Definition 5 (Satisfying set system)

Let 0 < α, β < 1. A set system F on X is (α, β)-satisfying if

Pr
R∼U(X ,α)

[∃S ∈ F ,S ⊂ R] > 1− β.

Definition 6 (Satisfying weight profile)

Let 0 < α, β < 1. A weight profile s is (α, β)-satisfying if any
s-spread set system is (α, β)-satisfying.
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Satisfying Set Systems

We mentioned that this was a more “robust” version of the
property of having disjoint sets.

Lemma 2 (11)

If F is a (1/r , 1/r)-satisfying set system and ∅ /∈ F , then F
contains r pairwise disjoint sets.

Let F be a set system on X . Consider a random coloring of
elements of X with r colors, so that each x ∈ X has an equal
probability of being colored with any of the r colors, independently
of the other elements. For 1 ≤ i ≤ r , let Yi denote the subset of X
colored with color i and let Ei denote the event that F contains an
i-monochromatic set, namely,

Ei = [∃S ∈ F , S ⊂ Yi ] .
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Satisfying Set Systems (continued)

Note that Yi ∼ U(X , 1/r), and since we assume F is
(1/r , 1/r)-satisfying, we have

Pr[Ei ] > 1− 1/r .

By the union bound, with positive probability all of E1, . . . , Er hold.
In this case, F contains a set which is i-monochromatic for each
i = 1, . . . , r . Such sets must be pairwise disjoint.

11Lovett, Solomon, and Zhang 2019.
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Robust Sunflower

Definition 7 (Robust sunflower)

Let 0 < α, β < 1, F be a set system, and let K =
⋂

S∈F S be the
common intersection of all sets in F . F is an (α, β)-robust
sunflower if (i) K /∈ F , and (ii) FK is (α, β)-satisfying. We call K
the kernel.

Robust sunflowers are a generalization of satisfying set systems. In
particular, an (α, β)-satisfying w -uniform system F will be an
(α, β)-robust sunflower as long as F contains at least two distinct
sets, because if R ⊃ S for some S ∈ F , then clearly R ⊃ S \ K .

Lemma 3 (12)

Any (1/r , 1/r)-robust sunflower contains an r -sunflower.

12Lovett, Solomon, and Zhang 2019.
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Main Theorem

The proof of 2 follows from the following stronger theorem, by
setting α = β = 1/r and applying Lemma 3.

Theorem 3 (Main theorem, robust sunflowers)

Let 0 < α, β < 1. For some constant C , any w -uniform set system

F of size |F| ≥
(
Cα−2 ·

(
logw log logw +

(
log 1

β

)2))w

contains an (α, β)-robust sunflower.

21 / 48



Table of Contents

1 Introduction

2 Notation and Some Preliminaries

3 Proof of Main Theorem
Structured Case
Pseudorandom Case

22 / 48



Structured Case

In the structured case, the set family has links of “large size”.
Formally let F be a w -set system of size |F| ≥ κw on a ground set
X . We shall show that it has a r -sunflower by induction on w .

1 Base Case: when w = 1, the set system has singleton sets.
For a sufficiently large κ, these form a r -sunflower with an
empty kernel.

2 Hypothesis: for i < w , let every i-set system of size ≥ κi
have an r -sunflower.

3 Induction: consider a w -set system F . In the structured
case, there is a link FT of size |FT | ≥ κw−|T | (if not, we are
in the pseudorandom case). Now, the (w − |T |)-set system,
FT has an r -sunflower by the induction hypothesis. But we
know that if FT contains an r -sunflower, then F contains an
r -sunflower. Hence we are done.
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Encoding Argument

Let s = (s0; s1, . . . , sw ) be a weight profile, and w ′ ≤ w . In the
pseudorandom case we consider w -set systems which are s-spread.
Let W ⊂ X . Given a set S ∈ F , the pair (W ,S) is said to be
good if there exists a set S ′ ∈ F (possibly with S ′ = S) such that

1 S ′ \W ⊂ S \W ;

2 |S ′ \W | ≤ w ′.

If no such S ′ exists, we say that (W , S) is bad. Note that if W
contains a set in F (i.e., S ′ ⊂W for some S ′ ∈ F) then all pairs
(W ,S) are good.

Lemma 4

Let (F , σ) be an s = (s0; s1, . . . , sw )-spread weighted w -set system
on X . Let W ⊂ X be a uniform subset of size |W | = p|X | and
B(W ) = {S ∈ F : (W , S) is bad}. Then
EW [σ(B(W ))] ≤ (4/p)w sw ′ .
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Encoding Argument

Proof. First, we simplify the setting a bit. We may assume by
scaling σ and s by the same factor that σ(S) = NS is an integer
for each S ∈ F . Let N =

∑
NS ≥ s0. By scaling back down by N,

we can then identify (F , σ) with the uniform distribution on the
multi-set system F ′ = {S1, . . . ,SN}, where each set S ∈ F is
repeated NS times in F ′. Thus

σ(B(W )) = |{i : Si ∈ F ′ and (W , Si ) is bad}|.

Assume that (W ,Si ) is bad in F ′. In particular, this means that
W does not contain any set in F . We describe (W , Si ) with a
small amount of information. Let |X | = n and |W | = pn. We
encode (W ,Si ) as follows:
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Encoding Argument (continued)

1 The first piece of information is W ∪ Si , a subset of X of size
between pn and pn + w . The number of options for this is at
most:

w∑
i=0

(
n

pn + i

)
≤

w∑
i=0

(
1− p

p

)i ( n

pn

)

≤
(

1− p

p
+ 1

)w ( n

pn

)
= p−w

(
n

pn

)
.

2 Given W ∪ Si , let j be minimal such that Sj ⊂W ∪ Si , so
that j depends only on W ∪ Si . Given Sj , there are fewer than
2w possibilities for A = Si ∩ Sj . As such, we will let A be the
second piece of information.
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Encoding Argument (continued)

3 Because Sj ⊂W ∪ Si and A = Si ∩ Sj , we have Sj \W ⊂ A.
Since (W , Si ) is bad, |A| ≥ |Sj \W | > w ′. The number of the
sets in F ′ which contain A is |F ′A| ≤ sw ′ . The third piece of
information will be which one of these is Si .

4 Finally, once we have specified Si , we will specify Si ∩W ,
which is one of 2w possible subsets of Si .

From these four pieces of information one can uniquely reconstruct
(W ,Si ). Thus the total number of bad pairs (W , Si ) is bounded by

p−w
(
n

pn

)
· 2w · sw ′ · 2w = (4/p)w sw ′

(
n

pn

)
.

Because the number of sets W ⊂ X of size |W | = p|X | is
( n
pn

)
,

the lemma follows by taking expectation over W .
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A Reduction Step

The following lemma is about reducing an (α, β)-satisfying set
system F to a smaller set system F ′ which is (α′, β′)-satisfying.

Lemma 5 (Reduction Lemma13)

Let s = (s0; s1, . . . , sw ) be a weight profile, w ′ ≤ w , δ > 0 and
define s′ = ((1− δ)s0; s1, . . . , sw ′). Assume s′ is (α′, β′)-satisfying.
Then for any p > 0, s is (α, β)-satisfying for

α = p + (1− p)α′, β = β′ +
(4/p)w sw ′

δs0
.

13Alweiss et al. 2020.
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A Reduction Step(Proof14)

Let (F , σ) be an s = (s0; s1, . . . , sw )-spread weighted set system on
X . Let W ∼ U(X , p). Say that W is δ-bad if σ(B(W )) ≥ δs0. By
applying the Corollary and Markov’s inequality, we obtain that

Pr[W is δ-bad] ≤ E[σ(B(W ))]

δs0
≤ (4/p)w sw ′

δs0
.

Fix W which is not δ-bad. If for some S ∈ F , the pair (W , S) is
good, then there exists π(S) = S ′ ∈ F (possibly with S ′ = S) such
that (i) S ′ \W ⊂ S \W and (ii) |S ′ \W | ≤ w ′.
Define a new weighted set system (F ′, σ′) on X ′ = X \W as
follows:

F ′ = {π(S) \W : S ∈ F \ B(W )}, σ′(S ′ \W ) = σ(π−1(S ′)).

14Alweiss et al. 2020.
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A Reduction Step(Proof15)

The claim is that F ′ is s′ = ((1− δ)s0; s1, . . . , sw ′)-spread. To see
that, note that σ′(F ′) = σ(F \ B(W )) ≥ (1− δ)s0 and that for
any set T ⊂ X ′,

σ′(F ′T ) =
∑
S ′⊃T

σ′(S ′) =
∑

S :π(S)⊃T

σ(S) ≤
∑
S⊃T

σ(S) = σ(FT ) ≤ s|T |.

Finally, all sets in F ′ have size at most w ′. Thus, if we choose
W ′ ∼ U(X ′, α′) then we obtain that with probability more than
1− β′, there exists S∗ ∈ F ′ such that S∗ ⊂W ′. Recall that
S∗ = S \W for some S ∈ F . Thus S ⊂W ∪W ′, which is
distributed according to U(X , p + (1− p)α′). The value of β′

accounts for the case where W is δ-bad.

15Alweiss et al. 2020.
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Janson’s Inequality16

Janson’s Inequality falls under ”The Poisson Paradigm”. The
idea is when X is the sum of ”mostly independent” indicator
random variables with E[X ] = µ, then X is close to a Poisson
distribution with mean µ. Hence, Pr [X = 0] ∼ e−µ.

Basically, we have a set of bad events Bi and we would like to
bound the probability that none of these bad events occur.

We would make use of Janson’s inequality to show that a
randomly chosen set from a p-biased distribution W is such
that for some Si ∈ F , Si ⊂W with high probability.

16Alon and Spencer 2004.
32 / 48



Janson’s Inequality17(Continued)

To explain the setting for Janson’s Inequality,
Ω is a finite universal set and R is a random set of Ω given by

Pr [r ∈ R] = pr

and these events are mutually independent over r ∈ Ω. Ai , i ∈ I
be subsets of Ω and I is a finite index set. Bi is the event that
Ai ⊂ R(That is, each point r ∈ R ”flips a coin” to determine if it
is in R and Bi is is the event that the coins for all r ∈ Ai came up
“heads”). Define ∆ =

∑
i 6=j

Pr [Bi ∧ Bj ]. By Janson’s Inequality,

Pr [∧i∈IBi ] ≤ e−
µ2

2δ

when ∆ ≥ µ.
17Alon and Spencer 2004.
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A Final Step

Repeated applications of the reduction step yield a set system
which is almost as spread as the original set system, but whose
sets are much smaller. Thus the spreadness guarantee becomes
good compared to the size of the sets in the system.

Lemma 6 (Satisfiability Lemma18)

Let 0 < α, β < 1, w ≥ 2, and set κ = max {4 log(1/β), 2} · w/α.
Let (F , σ) be an s = (s0; s1, . . . , sw )-spread weighted set system
where si < κ−i s0. Then F is (α, β)-satisfying.

18Alweiss et al. 2020.
34 / 48



A Final Step(Continued)

Proof: The proof proceeds by converting (F , σ) to an equivalent
uniformly weighted set system (F ′, σ′). Then we consider
W ∼ U(X , α) and define indicator random variables Zi

corresponding to sets Si ∈ F such that Zi = 1 when Si ⊂W .
Then defining µ and ∆ as the mean and the covariance parts resp.,

∆ =
`=w∑
`=1

N2p`α
2w−`

where p` is the fraction of the N2 pairs (i , j) such that
|Si ∩ Sj | = `. The crucial part is because of the spread property, p`
and subsequently ∆ can be upper bounded. Finally we can apply
Janson’s inequality for Pr [∀i Zi = 0].
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Putting it all together

Now, all of these steps are clubbed together so as to finally obtain
a bound on κ(w , α, β).

1 Apply Lemma 5 iteratively on the weighted set system (F , σ)
until we reach a sufficiently small weighted set system (F ′, σ).

2 Finally, Apply Lemma 6 on this reduced set system (F ′, σ).

These two steps are applied in an optimal manner to get the best
bound on κ(w , α, β).
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Optimizing for κ(w , α, β)

Let w ≥ 2 be fixed throughout, and let κ > 1 be optimized later.
We first introduce some notation. For 0 < ∆ < 1 and ` ≥ 1, let
s(∆, `) = (1−∆;κ−1, . . . , κ−`) be a weight profile. Let
A(∆, `),B(∆, `) be some bounds such that any s(∆, `)-spread set
system is (A(∆, `),B(∆, `))-satisfying.
Lemma 5 applied to w ′ ≥ w ′′ and p, δ shows that we may take

A(∆,w ′) ≤ A(∆ + δ,w ′′) + p,

B(∆,w ′) ≤ B(∆ + δ,w ′′) +
(4/p)w

′

δ(1−∆)κw ′′
.

We apply this iteratively for some widths w0, . . . ,wr . Set w0 = w
and wi+1 = d(1− ε)wie for some small ε as long as wi > w∗ for
some w∗. In particular, we need w∗ ≥ 1/ε to ensure wi+1 < wi ,
and we will optimize ε,w∗ later.
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Optimizing for κ(w , α, β) (continued)

The number of steps is thus r ≤ (K logw)/ε for some constant
K > 0. Let p1, . . . , pr and δ1, . . . , δr be the values we use for p, δ
at each iteration. To simplify the notation, let ∆i = δ1 + · · ·+ δi
and ∆0 = 0. Furthermore, define

γi =
(4/pi )

wi−1

κwi
.

Then for i = 1, . . . , r , we may take

A(∆i−1,wi−1) ≤ A(∆i ,wi ) + pi ,

B(∆i−1,wi−1) ≤ B(∆i ,wi ) +
γi

δi (1−∆i−1)
.
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Optimizing for κ(w , α, β) (continued)

Set pi = p = α
2r and δi =

√
γi , where r ≤ (K logw)/ε is the

number of steps. We will select the parameters so that ∆i ≤ 1/2
for all i . Thus we may take A(1/2,w∗) and B(1/2,w∗) such that

A(0,w) ≤ A(∆r ,wr ) + α/2 ≤ A(1/2,w∗) + α/2,

B(0,w) ≤ B(∆r ,wr ) + 2∆r ≤ B(1/2,w∗) + 2∆r .

Plugging in the values for δi , we compute the sum

∆r =
r∑

i=1

δi ≤
r∑

i=1

√
(4/p)wi−1

κ(1−ε)wi−1
=
∑

1≤i≤r

(
4/p

κ1−ε

)wi−1
2

≤
∑
k≥w∗

(
8K logw

εακ1−ε

) k
2

=

(
8K logw

εακ1−ε

)w∗/2∑
k≥0

(
8K logw

εακ1−ε

)k/2

≤ 21−w
∗
,
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Optimizing for κ(w , α, β) (continued)

assuming κ1−ε ≥ (32K logw)/εα. Apply Lemma 6 to bound
A(1/2,w∗) ≤ α/2 and B(1/2,w∗) ≤ β/2. We use the simple
observation that (1/2;κ−1, . . . , κ−w

∗
)-spread set systems are also

(1; (κ/2)−1, . . . , (κ/2)−w
∗
)-spread, in which case we can apply

Lemma 6
κ/2 ≥ (2 + 4 log(2/β)) · 2w∗/α.

We still have the freedom to choose ε > 0 and w∗ ≥ 1/ε. To
obtain A(0,w) ≤ α,B(0,w) ≤ β, we also need ∆r ≤ β/4 < 1/2.
Thus all the constraints are:

1 w∗ ≥ 1/ε;

2 κ1−ε ≥ (32K logw)/εα where K > 0 is a constant;

3 κ ≥ 4 · (2 + 4 log(2/β)) · w∗/α;

4 21−w
∗ ≤ β/4.
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Optimizing for κ(w , α, β) (continued)

Set ε = 1/ log logw and w∗ = c ·max {log(1/β), log logw} for
some large enough constant c ≥ 1. This ensures that the first and
last condition hold.
Thus we obtain that the result holds whenever

κ = Ω

(
max

{(
1

α

)1+2/ log logw

logw log logw ,

1

α

(
1 + log

1

β

)2

,
1

α

(
1 + log

1

β

)
log logw

})

In particular, it suffices to set

κ = O

(
α−2 ·

(
logw log logw +

(
log 1

β

)2))
.
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Summary

|F| ∼ κw where κ ∼ O(logw)

Structured case: F has large link and hence there exists set
T such that |FT | ≥ |F|/κ|T |.
Apply induction to show that FT contains a r -sunflower.

Pseudorandom case: All links are ”small” and hence, F is
κ-spread.

Lemma: F is (1/r , 1/r) satisfying.

Corollary: F has a r -sunflower.
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Summary(continued)

In particular, restating the results:

Lemma 7

If F is a (1/r , 1/r)-satisfying set system and ∅ /∈ F , then F
contains r pairwise disjoint sets.

Lemma 8

Any (1/r , 1/r)-robust sunflower contains an r -sunflower.

Lemma 9

Let 0 < α, β < 1 and w ≥ 2. Let κ = κ(w) > 1 be a nonstrictly
increasing function of w such that the weight profile
(1;κ−1, . . . , κ−w ) is (α, β)-satisfying. Then any w -uniform set
system F of size |F| > κw must contain an (α, β)-robust
sunflower.
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Summary(continued)

Theorem 4

Let 0 < α, β < 1. For some constant C , any w -uniform set system

F of size |F| ≥
(
Cα−2 ·

(
logw log logw +

(
log 1

β

)2))w

contains an (α, β)-robust sunflower.

Theorem 5

κ(w , α, β) = O

(
α−2 ·

(
logw log logw +

(
log 1

β

)2))
. Here

κ(w , α, β) is the least κ such that (1;κ−1, . . . , κ−w ) is
(α, β)-satisfying
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