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Krapchenko’s Method

Theorem 1 (Krapchenko 1971)

Any formula computing PARITY(x1, x2, . . . , xn) has size Ω(n2) in
de-Morgan basis.

Krapchenko used ”formal complexity measures” to prove the above
theorem.

Amazingly a very similar proof strategy helps us prove that formula
computing MAJORITY(x1, . . . , xn) requires Ω(n2) size.
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Formal Complexity Measures

Definition 1

A formal complexity measure (FC ) is a function from the space of boolean
function taking inputs on {0, 1}n to natural number satisfying the
following properties

1 FC (xi ) = 1 for all input variables xi
2 FC (f ) = FC (¬f )

3 FC (f ∨ g) ≤ FC (f ) + FC (g) or

4 FC (f ∧ g) ≤ FC (f ) + FC (g)

By application of De-Morgan’s law it is easy to see that properties
2, 3 imply property 4

From the above definition it is not immediately clear how FC will help
us get lower bounds for PARITY and MAJORITY. The next lemma
will give us a explicit relation between FC and formula complexity of
a function.
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Relation between Formal Complexity Measures and
Formula Complexity

Lemma 1

Any complexity measure FC satisfies

FC (f ) ≤ L(f )

where L(.) be the formula complexity of the function i.e the size of the
smallest formula in the de Morgan’s basis for the function.

Proof.

We will prove this by induction on L(f ).

The base case l(f ) = 1 follows directly from property 1.
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Relation between Formal Complexity Measures and
Formula Complexity

Proof (Cont.)

Inductive Step: Let f be the formula whose formula complexity is
under consideration in this step. Now we have two cases to deal with,

1 If f = ¬f1.

L(f ) = L(f1) + 1

L(f ) ≥ FC (f1) + 1

= FC (¬f1) + 1

= FC (f ) + 1 ≥ FC (f )
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Relation between Formal Complexity Measures and
Formula Complexity

Proof (Cont.)

Inductive Step: Let f be the formula whose formula complexity is
under consideration in this step. Now we have two cases to deal with,

2 If f = f1 ∨ f2.

L(f ) = L(f1) + L(f2) + 1

L(f ) ≥ FC (f1) + FC (f2) + 1

≥ FC (f1 ∨ f2) + 1

= FC (f ) + 1 ≥ FC (f )

The case of f = f1 ∧ f2 follows in the same manner.
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Krapchenko’s Measure

F(f ) = max
A⊆f −1(0)
B⊆f −1(1)

e(A,B)2

|A||B|

F is the function from boolean function which take input in {0, 1}n
and outputs a real number.

e(A,B) is the number of pairs (x , y) ∈ A× B such that x and y
differ in exactly one coordinate.

F is a complexity measure.Before we prove that it is indeed a
complexity measure we see how it helps us get lower bounds for
PARITY and MAJORITY.
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Lower Bound for PARITY in De-Morgan’s basis

Lemma 2

F(PARITY ) ≥ n2 where F is Krapchenko’s measure.

Proof.

To prove this it is sufficient to show that there exists

A ⊆ PARITY−1(0) , B ⊆ PARITY−1(1) and, e(A,B)2

|A||B| ≥ n2.
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Lower Bound for PARITY in De-Morgan’s basis

Proof (Cont.)

We take A = PARITY−1(0) and B = PARITY−1(1). Now |A| = 2n−1

and |B| = 2n−1.

Observation : Let PARITY (x) = 0 , now let y be obtained after
changing one bit x then PARITY (y) = 1.

The above observation suggests that for every x ∈ A there are exactly
n elements in B which differ from it by a bit. Thus
e(A,B) = n|A| = n2n−1.

Now for this choice of A,B we have e(A,B)2

|A||B| = n22n

(2n−1)(2n−1)
= n2
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Lower Bound for PARITY in De-Morgan’s basis

Theorem 1 (Krapchenko 1971)

Any formula computing PARITY(x1, x2, . . . , xn) has size Ω(n2) in
de-Morgan basis.

Proof.

Lemma 1 says for every ”appropriate” boolean function,formal
complexity measure L(f ) ≥ FC (f ) holds, where L(.) is the formula
complexity.

Lemma 2 tells us F(PARITY ) ≥ n2, where F is Krapchenko’s
measure.

Combining lemmma 1 and 2 we get L(PARITY ) = Ω(n2).
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Lower Bound for MAJORITY in De-Morgan’s basis

Theorem 2

Any formula computing MAJORITY(x1, x2, . . . , xn) has size Ω(n2) in
de-Morgan basis.

Similar to the case of PARITY we will lower bound the Krapchenko’s
measure for MAJORITY and then use the lemma 1 to give the lower
bound for formula complexity.
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Lower Bound for MAJORITY in De-Morgan’s basis

Lemma 3

F(MAJORITY ) ≥ Ω(n2) where F is Krapchenko’s measure.

Proof.

Now similar to prove of PARITY we will give A ⊆ MAJORITY−1(0)

and B ⊆ MAJORITY−1(1) s.t e(A,B2

|A||B| = Ω(n2).
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Lower Bound for MAJORITY in De-Morgan’s basis

Proof (Cont.)

Let A be the set of number where bn2c number of bits are set to 1 and
B be the set of numbers where bn2c+ 1 bits are set to 1.

Now
|A| = |B| =

( n
b n
2
c+1

)
.

Observation:
1 A ⊆ MAJORITY−1(0) and B ⊆ MAJORITY−1(1).
2 Let x ∈ A then MAJORITY (x) = 0 , now let y be obtained after

changing one bit x . If the bit being changed was set to 0 then
MAJORITY (y) = 1. If the bit being changed was set to 1 then
MAJORITY (y) = 0 (i.e it remains unchanged).

The above observation suggests that for every x ∈ A there are exactly
bn2c+ 1 elements in B which differ from it by a bit. Thus
e(A,B) = (bn2c+ 1)|A| = (bn2c+ 1)

( n
b n
2
c+1

)
.
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Lower Bound for MAJORITY in De-Morgan’s basis

Proof (Cont.)

We now have |A| = |B| =
( n
b n
2
c+1

)
and e(A,B) = (bn2c+ 1)

( n
b n
2
c+1

)

Thus

e(A,B)2

|A||B|
=

(bn2c+ 1)2
( n
b n
2
c+1

)2( n
b n
2
c+1

)( n
b n
2
c+1

) = (bn
2
c+ 1)2 = θ(n2)
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Lower Bound for MAJORITY in De-Morgan’s basis

Theorem 2

Any formula computing MAJORITY(x1, x2, . . . , xn) has size Ω(n2) in
de-Morgan basis.

Proof.

Lemma 1 says for every ”appropriate” boolean function,formal
complexity measure L(f ) ≥ FC (f ) holds, where L(.) is the formula
complexity.

Lemma 3 tells us F(MAJORITY ) ≥ Ω(n2), where F is Krapchenko’s
measure.

Combining lemmma 1 and 3 we get L(MAJORITY ) = Ω(n2).
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Krapchenko’s Measure is Formal Complexity Measure

Lemma 4

Krapchenko’s measure is a formal complexity measure.

Proof.
1 F(xi ) = 1, for all input variables xi :

For the given function f (x) = xi , f
−1(0) = {x | xi = 0} and

f −1(1) = {x | xi = 1}.
Observation: For every element x in f −1(0) there is exactly one
element y in f −1(1) which differs from x exactly at one bit position,
which is the ith bit.
From the above observation e(A,B)

|A| ≤ 1 where A ⊆ f −1(0) B ⊆ f −1(1).

Similarly we can prove e(A,B)
|B| ≤ 1.Multiplying these two we have

e(A,B)2

|A||B| ≤ 1 =⇒ F(xi ) ≤ 1.
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Krapchenko’s Measure is Formal Complexity Measure

Lemma 4

Krapchenko’s measure is a formal complexity measure.

Proof (Cont.)

1 F(xi ) = 1, for all input variables xi :

For the given function f (x) = xi , f
−1(0) = {x | xi = 0} and

f −1(1) = {x | xi = 1}.
We now have F(xi ) ≤ 1

Take A = {0n} and B = {0i−110n−i}.Now we have
A ⊆ f −1(0) B ⊆ f −1(1) and e(A,B) = |A| = |B| = 1. Thus
F(xi ) ≥ 1.
Combining these two we have F(xi ) = 1
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Krapchenko’s Measure is Formal Complexity Measure

Proof (Cont.)

2 F(f ) = F(¬f ) for all boolean functions f :
The proof follows from the fact that the definition of F is symmteric
with respect to A ⊆ f −1(0) and B ⊆ f −1(1)
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Krapchenko’s Measure is Formal Complexity Measure

Proof (Cont.)

3 F(h) ≤ F(f ) + F(g) where h = f ∨ g , for all boolean functions f , g :

To prove this, it is enough to prove that for every pair of sets
A ⊆ h−1(0) and B ⊆ h−1(1), there exists sets
Af ⊆ f −1(0),Bf ⊆ f −1(1),Ag ⊆ g−1(0),Bg ⊆ g−1(1) which satisfy

e(A,B)2

|A||B|
≤ e(Af ,Bf )2

|Af ||Bf |
+

e(Ag ,Bg )2

|Ag ||Bg |

Now we fix A,B and we will show the existence of sets Af ,Ag ,Bf ,Bg

as described above.
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Krapchenko’s Measure is Formal Complexity Measure

Proof (Cont.)

3 F(h) ≤ F(f ) + F(g) where h = f ∨ g , for all boolean functions f , g :

Now observe that h−1(0) = f −1(0) ∧ g−1(0) and
h−1(1) = f −1(1) ∨ g−1(1)

We take Af = Ag = A , Bf = B ∩ f −1(1) , Bg = B \ Bf .Observe that
each of the above sets is appropriately defined.
Now as Bf and Bg partition B, thus
e(A,B) = e(A,Bf ) + e(A,Bg ) = e(Af ,Bf ) + e(Ag ,Bg )
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Krapchenko’s Measure is Formal Complexity Measure

Proof (Cont.)

3 F(h) ≤ F(f ) + F(g) where h = f ∨ g , for all boolean functions f , g :
Now we have,

e(A,B)2

|A||B|
=

1

|A|
· (e(Af ,Bf ) + e(Ag ,Bg ))2

|Bf |+ |Bg |

≤ 1

|A|
· e(Af ,Bf )2

|Bf |
+

e(Ag ,Bg )2

|Bg |

[
(a + b)2

c + d
≤ a2

c
+

b2

d
] [2]
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Krapchenko’s Measure is Formal Complexity Measure

Proof (Cont.)
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Can we do better?

In this section we are going to answer the question on what is the
best lower bound given by the krapchenko’s method ?

At first glance the question seems a bit incomplete and it looks like
the answer should depend on the boolean function we are computing.

But it turns out that Krapchenko’s method cannot provide us with a
lower bound better than Ω(n2).

Before we prove the above statement let’s state by what we mean by
”lower bound given by Krapchenko’s Method”. In above proves for
parity and majority the pivotal tool used was Krapchenko’s measure.
So when we say ”lower bound given by Krapchenko’s method” we
actually mean lower bound given by using the Krapchenko’s measure.
Thus the question boils down to asking what is the maximum value of
Krapchenko’s measure ?
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Can we do better?

Lemma 5

Krapchenko’s method cannot provide us with a lower bound better than
Ω(n2)

Proof.

As discussed before it suffices to proving that Krapchenko’s measure
cannot attain values greater tha n2 i.e

Let f be a boolean function on n variables.Now we have

F(f ) = max
A⊆f −1(0)
B⊆f −1(1)

e(A,B)2

|A||B|

≤ max
A⊆{0,1}n
B⊆{0,1}n

e(A,B)2

|A||B|
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Can we do better?

Lemma 5

Krapchenko’s method cannot provide us with a lower bound better than
Ω(n2)

Proof (Cont.)

We now observe that e(A,B) ≤ nmin(|A|, |B|).

Now we get

F(f ) ≤ max
A⊆{0,1}n
B⊆{0,1}n

e(A,B)2

|A||B|

≤ max
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Can we do better?

Lemma 5

Krapchenko’s method cannot provide us with a lower bound better than
Ω(n2)

Proof (Cont.)

F(f ) ≤ max
A⊆{0,1}n
B⊆{0,1}n

n2min(|A|, |B|)2

|A||B|

≤ max
A⊆{0,1}n
B⊆{0,1}n

n2 · min(|A|, |B|)2

|A||B|

≤ n2
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Subbotovskaya’s Method
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Subbotovskaya’s Method

Gives a slightly weaker formula lower bound for PARITY : Ω(n1.5)
using a new method involving random restrictions

Later used by Andreev to obtain a formula lower bound for a different
function.

Main idea:
For any function f , if we are given formula for f , we can obtain an
upper bound(in terms of the original formula size) on the optimal

formula size for any restriction f ′. When accompanied with a lower
bound on formula for f ′, we get a lower bound for the original

formula.
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Subbotovskaya’s Method

Goal:
We want to maximize the “gap” between the formula for f and f ′,
i.e, we want the reduction in size of the formula to be as large as
possible, as this will, in the reverse direction, give a larger lower
bound for the formula for f .

Note that it is okay to obtain this gap for only some restrictions, as
long as we can guarantee the existence of the corresponding
restriction.

We will use the probabilistic method for this.

Pulkit Sinha Omkar Bhalchandra Baraskar (Indian Institute of Science)On Formula Lower bounds December 2020 31 / 75



Subbotovskaya’s Method

Goal:
We want to maximize the “gap” between the formula for f and f ′,
i.e, we want the reduction in size of the formula to be as large as
possible, as this will, in the reverse direction, give a larger lower
bound for the formula for f .

Note that it is okay to obtain this gap for only some restrictions, as
long as we can guarantee the existence of the corresponding
restriction.

We will use the probabilistic method for this.

Pulkit Sinha Omkar Bhalchandra Baraskar (Indian Institute of Science)On Formula Lower bounds December 2020 31 / 75



Subbotovskaya’s Method

Goal:
We want to maximize the “gap” between the formula for f and f ′,
i.e, we want the reduction in size of the formula to be as large as
possible, as this will, in the reverse direction, give a larger lower
bound for the formula for f .

Note that it is okay to obtain this gap for only some restrictions, as
long as we can guarantee the existence of the corresponding
restriction.

We will use the probabilistic method for this.

Pulkit Sinha Omkar Bhalchandra Baraskar (Indian Institute of Science)On Formula Lower bounds December 2020 31 / 75



Subbotovskaya’s Method

Definition 1

A boolean formula F is said to Nice if the following holds:

1 There are no ¬ gates in F , except possibly just after the inputs/leaf
nodes.

2 For any ∧ or ∨ gate in F such that one of its input is some literal
xi (either some input directly or the ¬ of it), then the other input is a
formula whose output does not depend on xi .

3 All leaf nodes are some input variables OR F outputs a constant
function, in which case F must have no gates.

Observe that every boolean function f has a corresponding nice formula F
which has size atmost constant times the the size of the optimal formula
for f .
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Subbotovskaya’s Method

Observe that every function f has a corresponding nice formula F which
has size atmost constant times the the size of the optimal formula for f .

Condition 1. can be made to be satisfied trivially.

For Condition 2.

h(x1, x2, x3 . . . ) ∧ x1 = h(1, x2, x3 . . . ) ∧ x1

Similarly, for ∨

h(x1, x2, x3 . . . ) ∨ x1 = h(0, x2, x3 . . . ) ∨ x1
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Subbotovskaya’s Method

|F | := Number of literals in F

Note that this can go to 0 for the case of F not taking any inputs.

Definition 2

We denote by fπ the function obtained by restricting the input of f by
the restriction π

Lemma 1

Suppose given a boolean function f taking n ≥ 2 inputs x1 . . . xn. Let
π be a restriction chosen uniformly randomly from the set of restrictions
setting the value of exactly one xi . Let F denote some optimal nice
formula for f , and Fπ some optimal nice formula for fπ. Then,

Eπ[|Fπ|] ≤
(

1− 1.5

n

)
|F |
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Proof of Lemma 1

Lemma 1

Eπ[|Fπ|] ≤
(

1− 1.5

n

)
|F |

For every restriction π of the given kind, we construct a formula F ′π for fπ
which is nice, such that over the uniform distribution considered,

Eπ[|F ′π|] ≤
(

1− 1.5

n

)
|F |

Since |F ′π| ≥ |Fπ| for each π due to the optimality of Fπ, it suffices to find
such an F ′π for each π, as E[|F ′π|]π ≥ E [|Fπ|]
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Proof of Lemma 1

Let π be the restriction which sets xi to j , for i ∈ [n] and j ∈ {0, 1}

Then, to obtain F ′π, we simply assign the values of the inputs in F , and
lazily evaluate gates as much as we can.

(h ∧ 1)→ h (h ∧ 0)→ 0

(h ∨ 1)→ 1 (h ∨ 0)→ h

¬0→ 1 ¬1→ 0

Note that throughout the lazy evaluation, the conditions 1 and 2 in
Definition 1 are satisfied, and the lazy evaluation terminates only when
condition 3 is satisfied.

=⇒ F ′π obtained is nice.
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Proof of Lemma 1

For Condition 2:
For any ∧ gate at some stage of lazy evaluation, with one of the inputs x ,
which is a literal of F , it might either get removed, or

h ∧ x → h′ ∧ x
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Proof of Lemma 1

Now, we show that, if si denotes the number of xi and ¬xi literals in F
with input xi or ¬xi , then

Ej∈{0,1}[|F | − |F ′π|] ≥
3

2
si

Essentially, |F | − |F ′π| denotes the reduction in the number of literals when
doing the lazy evaluation, so its enough to lower bound this.
For a literal y of xi , i.e, either xi or ¬xi , consider an ∧ gate in F : h ∧ y

(h ∧ y)→

{
h when y → 1

0 when y → 0

=⇒ Average/expected loss of literals ≥ 3
2 =⇒ Overall expected loss of

literals≥ 3
2si
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Proof of Lemma 1

Ej∈{0,1}[|F | − |F ′π|] ≥
3

2
si

=⇒ Ei∈[n]
[
Ej∈{0,1}[|F | − |F ′π|]

]
≥ Ei∈[n]

[
3

2
si

]

=⇒ Eπ[|F | − |F ′π|]] ≥
3

2
·
∑n

i=1 si
n

=
3|F |
2n

=⇒ Eπ[|Fπ|] ≤
(

1− 1.5

n

)
|F |
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Subbotovskaya’s Method

Lemma 2

If π is chosen uniformly from the set of restrictions on x1, . . . xn, n ≥ 2
restricting exactly k ≤ n− 1 variables

, then for optimal nice circuits F and
Fπ for f and fπ,we have

Eπ[|Fπ|] ≤
(
n − k

n

)1.5

|F |

We will use Lemma 1 in succession to prove this. When we randomly pick
π, suppose we “mark” π with a uniformly random order xj1 , xj2 . . . xjk on
the variables fixed by π. This does not change the expectation as each
restriction can be marked with k! orderings.
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restriction can be marked with k! orderings.
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Proof of Lemma 2

For each π( along with the ordering), define πi to be the subrestriction of
π which sets the value of only first i xji ’s. So, fπ0 = f , and fπk = fπ.

Now, from Lemma 1, we know that

Eπi+1|πi [|Fπi+1 |] ≤
(

1− 1.5

n − i

)
|Fπi |

=⇒ Eπi+1 [|Fπi+1 |] ≤
(

1− 1.5

n − i

)
Eπi [|Fπi |]

=⇒ Eπ[|Fπ|] ≤ |F |
k−1∏
i=0

(
1− 1.5

n − i

)

Pulkit Sinha Omkar Bhalchandra Baraskar (Indian Institute of Science)On Formula Lower bounds December 2020 41 / 75



Proof of Lemma 2

For each π( along with the ordering), define πi to be the subrestriction of
π which sets the value of only first i xji ’s. So, fπ0 = f , and fπk = fπ.
Now, from Lemma 1, we know that

Eπi+1|πi [|Fπi+1 |] ≤
(

1− 1.5

n − i

)
|Fπi |

=⇒ Eπi+1 [|Fπi+1 |] ≤
(

1− 1.5

n − i

)
Eπi [|Fπi |]

=⇒ Eπ[|Fπ|] ≤ |F |
k−1∏
i=0

(
1− 1.5

n − i

)

Pulkit Sinha Omkar Bhalchandra Baraskar (Indian Institute of Science)On Formula Lower bounds December 2020 41 / 75



Proof of Lemma 2

For each π( along with the ordering), define πi to be the subrestriction of
π which sets the value of only first i xji ’s. So, fπ0 = f , and fπk = fπ.
Now, from Lemma 1, we know that

Eπi+1|πi [|Fπi+1 |] ≤
(

1− 1.5

n − i

)
|Fπi |

=⇒ Eπi+1 [|Fπi+1 |] ≤
(

1− 1.5

n − i

)
Eπi [|Fπi |]

=⇒ Eπ[|Fπ|] ≤ |F |
k−1∏
i=0

(
1− 1.5

n − i

)

Pulkit Sinha Omkar Bhalchandra Baraskar (Indian Institute of Science)On Formula Lower bounds December 2020 41 / 75



Proof of Lemma 2

Eπ[|Fπ|] ≤ |F |
k−1∏
i=0

(
1− 1.5

n − i

)

≤ |F |
k−1∏
i=0

(
1− 1

n − i

)1.5

[(1− x)c ≥ (1− cx)]

= |F |
(
n − k

n

)1.5
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Subbotovskaya’s Method

Theorem

Every formula computing PARITY has size Ω(n1.5)

Proof :
Let f be the function computing parity on n variables x1 . . . xn , and F be
an optimal nice formula for it.

Consider π uniformly chosen from the set
of restrictions on x1, x2 . . . xn, setting the values of exactly n − 1 of these.
From Lemma 2, we have

Eπ[|Fπ|] ≤
|F |
n1.5

So, there must exist some π for which

|Fπ| ≤
|F |
n1.5
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Subbotovskaya’s Method

Since π restricts only n − 1 variables, |Fπ| ≥ 1

1 ≤ |F |
n1.5

=⇒ |F | ≥ n1.5
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Andreev’s Method



Andreev’s Method

Used Subbotovskaya’s Method of Random restrictions to obtain a
lower bound for a different function.

Definition 1

Consider the function f : {0, 1}2n → {0, 1} such that f (x , y), for
x , y ∈ {0, 1}n, computes the following:

Take x to be the the truth table of a boolean function φx on lg n bits.

Let the string y be taken as the entries of matrix Y with lg n rows
and n

lg n colums.

Then

f (x , y) = φx

(
⊕

n
lg n

j=1Y1j ,⊕
n

lg n

j=1Y2j · · · ⊕
n

lg n

j=1 Y(lg n)j

)

Note that this function can be easily computed.
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Andreev’s Method

Theorem

Any formula that computes f as defined in the previous definition has size
Ω(n2.5−ε) for every ε > 0

Proof : Take an optimal nice formula (as defined in previous section) F for
computing f .
Note that φx can vary over all the boolean functions on lg n bits.

Claim 1

There is a φx which requires a boolean formula of size c n
lg n , where c > 0

is a constant not dependent on n.

This is seen by the non uniform size heirarchy theorem mentioned in
Lecture 9. We fix such a φ, and let x0 represent the truth table for this φ.
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Andreev’s Method

Let fφ denote the function obtained by restricting x to x0 in f . Let Fφ be
the optimal nice formula computing fφ.

Clearly, |Fφ| ≤ |F |, as one can
lazily evaluate F .
Now, the main idea of the proof is to obtain a small formula for φ from
Fφ, which will put a lower bound on |Fφ|, and thus |F |.
We again utilize random restrictions, and the Lemma 2 proved in the
previous section.
Let π be chosen randomly from the set of restrictions on the input
variables of fφ ( there are n of those remaining) restricting exactly n − k
variables for k = 10 lg n lg lg n
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Andreev’s Method

Claim 2

With probability ≥ 0.9, the following happens:
For each i ∈ [lg n], atleast 1 Yij has not been set by π.

Proof : For an individual i , the probability that no Yij survived is clearly

p =

(
n
(

1− 1
lg n

)
k

)
(n
k

) =
k−1∏
i=0

n
(

1− 1
lg n

)
− i

n − i
≤

k−1∏
i=0

(
1− 1

lg n

)

=⇒ p ≤
(

1− 1

lg n

)k

=

(
1− 1

lg n

)lg n·10 lg lg n
≤ 1

(lg n)10

Now, by union bound, the probability of no Yij surviving for atleast 1 is i
≤ 1

(lg n)9
≤ 0.1 for large enough n.
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Andreev’s Method

Now, let the function obtained by the restriction π applied on function fφ
be denoted fπ, and the corresponding optimal nice formula be Fπ

Now, by
the Lemma 2 of the previous section, we have that

Eπ[|Fπ|] ≤ |Fφ|
(
k

n

)1.5

So, Markov bound gives that there is a constant c ′ > 0 such that

Prπ

[
|Fπ| > 10|Fφ|

(
k

n

)1.5
]
≤ 0.1

Eπ[|Fπ|]
|Fφ|

(
k
n

)1.5 ≤ 0.1
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Andreev’s Method

So, again by union bound, we have that with atmost 0.2 probability, π

restricts the value of all Yij for atleast 1 i OR |Fπ| ≥ 10|Fφ|
(
k
n

)1.5
.

So, there must be a π such that atleast 1 Yij survives for each i and

|Fπ| ≤ 10|Fφ|
(
k
n

)1.5
.

Now, with this Fπ, we can construct a formula for φ which atmost as large
as as Fπ.
This can be done by simply restricting all but one Yij for each i in Fπ, and
then to compute φ(x1, x2 . . . xlg n), we simply set the remaining Yij in Fπ
to xi or ¬xi as suitable, for each i ∈ [lg n].
So, by our choice of φ, and this specific π, we get that

cn

lg n
≤ |Fπ| ≤ 10|Fφ|

(
k

n

)1.5
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Andreev’s Method

Setting the value of k , and using that |F | ≥ |Fφ|

|F | ≥ c · n2.5

102.5(lg n)2.5(lg lg n)1.5

So, the size of any nice formula computing f is lower bounded by
Ω(n2.5−ε) for every ε > 0.
As shown earlier, since the order of size the overall optimal formula and
the optimal nice formula is same, the above bound also holds in general.
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Andreev’s Method

We also briefly discuss the exercise mentioned at the end of this section in
the lecture notes.

Exercise

Show that f can be computed by a formula of size O(n3)

We do this as follows:

1 Find a formula for g(x , y1, y2 . . . ylg n) = φx(y1, y2 . . . ylg n) with size
atmost O(n). Naive approach leads to O(n lg n) (which would also
work). Here, x is again the truth table for some function φ on lg n
variables

2 Compute each
⊕ n

lg n

j=1 Yij and with O( n2

(lg n)2
) formula.

Replacing each yi in 1) with the corresponding formula from 2 will lead to
a O(n3(lg n)−2) size formula.
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Andreev’s Method

Discussing point 1. Naive method(O(n lg n):

∨
ai∈{yi ,¬yi}

(
φ(a1, a2 . . . alg n) ∧

(
∧

i∈[lg n]
ai

))

Combining ylg n terms and ¬ylg n terms(
ylg n ∧ ∨

ai∈{yi ,¬yi}

(
x1k ∧

(
∧

i∈[lg n−1]
ai

)))
∨

(
¬ylg n ∧ ∨

ai∈{yi ,¬yi}

(
x0k ∧

(
∧

i∈[lg n−1]
ai

)))
Repeating this, we get an O(n) formula.
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Nechiporuk’s Method
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Nechiporuk’s Method

Nechiporuk’s method gives lower bound on formula size of some
explicit functions in full binary basis.

Nechiporuk bound gives a lower bound of Ω(n2) which is the best
known lower bound on the size of formulae over full binary basis

The key ingredient in Nechiporuk’s Method is the idea of restrictions,
to understand what we exactly mean by that we have to start with
definition of restrictions.
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Restrictions

Definition 1

Let f be a function on {0, 1}n and Y be a subset of input variables.
Nf (Y ) is the number of distinct functions g : {0, 1}Y → {0, 1} we can get
when we fix all the input bits except Y . Each of this subfunction g is said
to be a restriction of f on Y .

Intuitively larger value of Nf (Y ) means that the function is harder to
compute hence the corresponding formula would be of larger size.
Nechiporuk’s Method uses this notion of ”hard” functions to give a
lower bound.
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Block Distinction Functions

Definition 2

Let f be a boolean function on n variables. We can group variables to
form a block i.e

f (x1, . . . , xn) = f (x1, . . . , xc , xc+1, . . . , x2c , . . . , x(b−1)c+1, . . . , xbc)

Here we have b blocks each having c variables. Then the function f is
given as

f =

{
1 if all the Y ′i s are different

0 otherwise

We will call function described in the above as ”Block Distinction
Functions”.

These functions are also called ”Elements Distinction function” where
instead of grouping terms we give block as inputs hence the name.
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Here we have b blocks each having c variables. Then the function f is
given as

f =

{
1 if all the Y ′i s are different

0 otherwise

We will call function described in the above as ”Block Distinction
Functions”.

Nechiporuk’s method provides a lower bound on the size of formula
computing Block Distiction functions of specific block sizes over the
full binary basis.
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Nechiporuk’s Method

Theorem 1

Size of formula computing the Block Distinction function with size of each
block equal to log(n) is Ω( n2

log2(n)
log(log(n))).

Theorem 2 (Nechiporuk’s Bound)

Let f : {0, 1}n → {0, 1} be a boolean function on the the set of variables
X = {x1, . . . , xn}, now let Y1, . . . ,Ym be the disjoint subsets of X . Then

LB2(f ) + 1 ≥ 1

4

m∑
i=1

log(Nf (Yi ))

where LB2(.) gives the formula complexity in the full binary basis.
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Nechiporuk’s Method

Theorem 1 gives us the class of functions whose formula complexity is
lower bounded by Ω(n2) (ignoring the log factor).

Theorem 2 tells us about the pivotal idea involved in this method i.e
how counting the number of restrictions will help us lower bound the
formula complexity.

We will prove theorem 1 as doing so will implicitly prove 2, I will
remark on this at the end.
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Nechiporuk’s Method

Theorem 1

Size of formula computing the Block Distinction function with size of each
block equal to log(n) is Ω( n2

log2(n)
log(log(n))).

Proof.

Going by our intuition we will first try to bound Nf (Yi ).

Consider fixing {Y1, . . . ,Yb} \ Yi . Now we have two cases
1 If two blocks have same assignment. Then the restriction of function

to Yi is a zero function.
2 If all the blocks have pairwise distinct assignment then corresponding

each assignment we have unique restriction on Y .

From the above discussion we have Nf (Yi ) =
( 2c

b−1
)

+ 1.
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Nechiporuk’s Method

Proof (Cont.)

Consider F be the formula computing f . Let l(Yi ) be the number of
leaves labelled by variables of Yi in F .

Consider fixing variables in {Y1, . . . ,Yb} \ Yi .

Observations :
1 The resulting formula would compute restriction function on Yi .Also

the induced formula would not have any leaves labelled by 0 and 1.
2 Now since the resulting formula is a tree, the number of internal nodes

is one less than the number of leaf nodes i.e l(Yi )− 1.
3 The total number of distinct boolean valued functions taking 2 binary

inputs is equal to 24 = 16.

Thus from the above two observations the number of distinct boolean
functions computable on variables on Yi is 16l(Yi )−1 ≤ 16l(Yi ).
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Nechiporuk’s Method

Proof (Cont.)

We now have Nf (Yi ) =
( 2c

b−1
)

+ 1 and number of distinct boolean

function is bounded from above by 16l(Yi ).

Combining this two we get
the following lower bound for l(Yi )

l(Yi ) ≥ log

(
2c

b − 1

)
for all i .
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Nechiporuk’s Method

Proof (Cont.)

Now the size of the formula is lower bounded by the number of leaves
i.e

|F | ≥
b∑

i=1

l(Yi )

≥
b∑

i=1

log(

(
2c

b − 1

)
)

≥
b∑

i=1

(b − 1)log(
2c

b − 1
) [

(
n

k

)
≥ (

n

k
)k ] [2]

≥ b(b − 1)log(
2c

b − 1
) ≥ b(b − 1)log(

2c

b
)
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Nechiporuk’s Method

Proof (Cont.)

We now have |F | ≥ b(b − 1)log(2
c

b ).

Substisuting the value of c = log(n) and b = n
log(n) we get

|F | = Ω(
n2

log2(n)
log(log(n)))
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Nechiporuk’s Method

Proof (Cont.)

We now have |F | ≥ b(b − 1)log(2
c

b ).

If we have n = 2k · 2k , b = 2k and c = 2k for some k ∈ N. Now
substituting these into our above equation gives us

|F | = Ω(
n2

log(n)
)
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Nechiporuk’s Method

As promised we implicitly proved theorem 2 (Nechiporuk’s bound) in
proof of theorem 1.

Nechiporuk method provides a tight lower bound for Block Estimation
functions with n = 2k · 2k , b = 2k and c = 2k for some for k ∈ N i.e
there is a formula in full binary basis of size O( n2

log(n)) infact we can

give a formula in de-Morgan basis of size O( n2

log(n)) computing the

above function.
1 So in our circuit we will make b2 comparisons(consider them as a black

box computing whether the two blocks are equal) between any two
blocks.

2 Now in such comparison between the blocks we make c
comparisons(here comparison means AND operations) between
corresponding elements in the block.

3 The total complexity is O(c · b2 + 2log(c·b2)) = O( n2

log(n) )
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Nechiporuk’s Method

As promised we implicitly proved theorem 2 (Nechiporuk’s bound) in
proof of theorem 1.

Nechiporuk method provides a tight lower bound for Block Estimation
functions with n = 2k · 2k , b = 2k and c = 2k for some for k ∈ N i.e
there is a formula in full binary basis of size O( n2

log(n)) infact we can

give a formula in de-Morgan basis of size O( n2

log(n)) computing the
above function.

Nechiporuk bound is the best known lower bound on the size of
formulae over full binary basis
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Can we do better?

In this section we are going to answer the question on what is the
best lower bound given by the Nechiporuk’s method ?

It turns out that Nechiporuk’s method cannot provide us with a lower
bound better than Ω( n2

log(n)).
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Can we do better?

Before we prove the above statement let’s state by what we mean by
”lower bound given by Nechiporuk’s Method”. In the above proof as
mentioned before the pivotal tool used is theorem 2.

Theorem 2 says that consider any disjoint subsets Y1,Y2, . . . ,Ym of
X then the size of the formula is lower bounded by the sum of
number of unique restriction on these Yi ’s i.e

|F | ≥ 1

4

m∑
i=1

log(Nf (Yi ))

So when we say ”lower bound given by Nechiporuk’s method” we
actually mean lower bound given by theorem 2 i.e the lower bound
given by the RHS of the above equation . Hence to see what is the
best lower bound given by Nechiporuk’s method we have to find the
maximum value of the above expression over the choice of the subsets
Yi ’s. .
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Can we do better?

Lemma 1

Nechiporuk’s Method cannot give a lower bound better than Ω( n2

log(n))

Proof.

As discussed before it suffices to proving that maximum value
attained by

∑m
i=1 log(Nf (Yi )) cannot be greater than n2

log(n) upto a

constant factor(depends on n but not on the choice of subsets) ,
where Yi ’s are disjoint subset of X and maximum is taken over all the
choices of disjoint subsets.

Now as Nf (Yi ) is counting unique restriction functions

g : {0, 1}Yi → {0, 1} of f on Yi , hence Nf (Yi ) ≤ 22
|Yi | ( which is the

total number of boolean function on {0, 1}Yi ) .

Now notice that once we fix all variables except Yi then the
restriction function g of f on Yi , is fixed and given by
g(Y ) = f (Y1, . . . ,Yi−1,Y , . . . ,Yn). Thus Nf (Yi ) ≤ 2n−|Yi |.
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Can we do better?

Proof (Cont.)

This tells us that Nf (Yi ) ≤ min(2n−|Yi |, 22
|Yi |).

Let’s say Y1, . . . ,Ym are subsets of X of size s1, . . . , sm. Now,

m∑
i=1

log(Nf (Yi )) ≤
m∑
i=1

log(min(2n−si , 22
si ))

Now I claim that for positive integers s1, . . . , sn, n s.t
∑m

i=1 si ≤ n
then

m∑
i=1

log(min(2n−si , 22
si )) = O(

n2

log(n)
)

holds.
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Can we do better?

Proof (Cont.)

Now I claim that for positive integers s1, . . . , sn, n s.t
∑m

i=1 si ≤ n
then

m∑
i=1

log(min(2n−si , 22
si )) = O(

n2

log(n)
)

holds

Using the above inequality it is easy to see that

m∑
i=1

log(Nf (Yi )) = O(
n2

log(n)
)

.
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