
Csanky’s Algorithm

Tushar Mopuri

CCT Presentation

2020

Theorem

Theorem: Let A = (aij)i ,j∈[n] be a matrix where all aij ’s are b-bit

integers. Then the following can be computed in (log nb)O(1) time
using (nb)O(1) many processors:

1. The characteristic polynomial of A, pA(x)

2. The determinant of A, det(A)

3. The inverse of A, A−1

Overview and Assumptions

Essentially, we are trying to show that the problems of computing
pA(x), det(A) and A−1 are in NC. References are mentioned at the
end, and as instructed the following assumptions are made:

1. Uniformity will not be addressed in this presentation.

2. We assume that integer addition and multiplication are in NC,
but will give a more explicit statement in the following slides.

Integer Addition and Multiplication

The proofs for both the following statements are given in Lecture
30 of Dexter C. Kozen - The Design and Analysis of Algorithms
(Henceforth called Reference 1). In fact it also gives a method to
do integer division with remainder in NC that is based on Newton’s
method.

I We will use the fact that addition of two n-bit binary numbers
can be performed in log n time with n processors.

I Similarly, we use the fact that two n-bit binary numbers can
be multiplied in O(log n) time with O(n2) processors. More
precisely, the computation is done in O(log n) stages, each of
which takes O(1) time and O(n2) processors.

Preliminary Properties

Given a matrix A ∈ Rn×n (In our case Zn×n, but since the
properties hold more generally, we will state them as such), let
λ1, λ2, . . . , λn be the eigenvalues of A. Then:

I Det(A) = λ1λ2 . . . λn

I Trace(A) =
∑n

i=1(Aii) = λ1 + λ2 + · · ·+ λn

I Trace(Ai) = (λi1 + λi2 + · · ·+ λin)

I Cayley Hamilton Theorem: Every square matrix satisfies its
characteristic equation. Let
pA(x) = Det(λI − A) = xn + c1x

(n−1) + · · ·+ cn, then
pA(A) = An + c1A

n−1 + · · ·+ cnI = 0, where
cn = (−1)nDet(A).

Computing the product of any two matrices is in NC

WLOG it is enough to consider only n × n square matrices. Given
Xn×n,Yn×n ∈ Zn×n, we can compute Pn×n = Xn×n · Yn×n as
follows:

I Let Pij be the element in the i th row and the j th column of P,
then Pij =

∑n
k=1 AikBkj . This term can be computed using n

integer multiplications and (n − 1) integer additions.

I The n multiplications can be done in parallel by n processors
requiring O(1) time each, and these outputs can be plugged
into another ’stage’ which performs the (n-1) additions in a
treelike fashion, thus requiring O(log n) time and O(n)
processors for the whole process (These processors can be
considered ’arithmetic’ processors and we assume they can
compute addition and multiplication ’efficiently’).

Computing the product of any two matrices is in NC

I Thus computing each Pij is in NC, since the input data
Aik ,Bkj can be assumed to be known values for all
i , j , k ∈ [n]. Thus all n2 Pij values can be computed parallely
in O(log n) time with O(n3).

I Therefore computing the product of two matrices is in the
class NC. (We could call this class NCA since we are
technically using arithmetic processors until we prove that this
is equivalent to regular processors, but we assume the proof is
already done for notational simplicity).

Computing Ai is in NC

I Given 1 ≤ i ≤ n, we claim computing Ai is in NC. We have
just shown that finding A2 is in NC.

I So using repetitive squaring, we can compute any Ai

mentioned above using at most O(log n) matrix
multiplications, implying that the problem of computing Ai is
in the class NC.

Newton Identities

For 1 ≤ i ≤ n, Pi (λ1, λ2, . . . , λn) is defined to be the sum of the
i th power of the eigenvalues. So,

P1 =
n∑

j=1

λj

P2 =
n∑

j=1

λ2j

...

Pn =
n∑

j=1

λnj

Newton Identities

Similarly for 1 ≤ i ≤ n, Ei (λ1, λ2, . . . , λn) is defined to be the sum
of all distinct products of i distinct variables. So,

E1 =
∑
j∈[n]

λj

E2 =
∑
i<j

λiλj

E3 =
∑

i<j<k

λiλjλk

...

En = λ1λ2 . . . λn

Newton Identities

I For all 1 ≤ i ≤ n, Pi = Trace(Ai), and we have already shown
that computing Ai is in NC.

I Since the sum contains n terms, the trace can be computed in
a treelike manner in O(log n) time with n processors (Again
assuming that addition can be done ’effeciently’).

I Therefore from now on, for all i ∈ [n], Pi can be treated as a
known value.

Newton Identities

I The characteristic polynomial pA(x) = xn + c1x
(n−1) + · · ·+ cn

is a monic polynomial of degree n, with roots λ1, λ2, . . . , λn.

I So it can be written as pA(x) = (x − λ1)(x − λ2) . . . (x − λn).

I This implies that ∀k ∈ [n],

ck = (−1)kEk

Newton Identities

I From the definitions of Pi and Ei we can say:

E1 = P1

2E2 = (−)P2 + P1E1

3E3 = (+)P3 − P2E1 + P1E2

...

In general,

kEk = (−1)k+1(Pk − Pk−1E1 + Pk−2E2 − . . .
+ (−1)k−1P1Ek−1)

=⇒ Ek =
(−1)k+1(Pk − Pk−1E1 + Pk−2E2 − . . .P1Ek−1)

k

I These relations are called Newton’s Identities.

Newton Identities

I We can write these relations in matrix notation as follows:

P = MC

Where, P =


−P1

−(P2)/2
...

−(Pn−1)/(n − 1)
−Pn/n


n×1

, C =


c1
c2
...

cn−1
cn


n×1

Newton Identities

I And

M =


1 0 0 . . . 0

−P1/2 1 0 . . . 0
P2/3 −P1/3 1 . . . 0

...
...

...
. . .

...
(−1)n−1Pn−1/n . . . P2/n −P1/n 1


n×n

I Then C can be computed by

C = M−1 · P

Newton Identities

I To compute M−1 we note that M can be written as the sum
of an identity matrix and a nilpotent matrix, as M = I + N
where,

N =


0 0 0 . . . 0

−P1/2 0 0 . . . 0
P2/3 −P1/3 0 . . . 0

...
...

...
. . .

...
(−1)n−1Pn−1/n . . . P2/n −P1/n 0


n×n

It is easy to see that N i = 0, ∀i > n.

Newton Identities

And I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 . . . 0 0 1


n×n

I Hence,
M−1 = (I + N)−1

= I + N + N2 + N3 + . . .

= I + N + N2 + N3 + · · ·+ Nn

(Since N i = 0, ∀i > n.)

Newton Identities

I We have already shown that every N j for j ≤ n can be
computed in NC. Thus we can compute M−1 parallelly with a
polynomially bounded number of processors.

I And now since matrix multiplication is in NC, the entire
process of multiplying the output of this stage with P, to
obtain M−1 · P is in NC.

I With this, we have shown that the computation of the values
of all the coeffecients c1, c2, . . . , cn is in NC, implying the
computation of the characteristic polynomial of A is in NC.

Computation of Determinant and Inverse

I As stated earlier, the determinant of the Matrix A,
Det(A) = (−1)ncn, thus it follows directly from the above
that this computation is in NC as well.

I Recall from the Cayley Hamilton Theorem that
pA(A) = An + c1A

n−1 + · · ·+ cnI = 0. If A is non-singular,
then cn = (−1)nDet(A) 6= 0 and A−1 exists.

I Then we can multiply this equation by A−1 to get:

A(n−1) + c1A
(n−2) + · · ·+ cnA

−1 = 0

=⇒ A−1 =
A(n−1) + c1A

(n−2) + · · ·+ cn−1I

−cn

Computation of Determinant and Inverse

I We have already shown that the computation of all the
coeffecients ci , ∀i ∈ [n] is in NC, and since computing Ai is
also in NC.

I Thus the computation of A−1 is also in NC, since all ci and
Ai , ∀i ∈ [n] can be computed parallely in NC, and given these
outputs, we can compute each of the n2 elements of A−1

parallelly in NC, thus making the whole process NC.

More on ’Effecient’ Addition and Multiplication

I Here we will explain what we meant by ’arithmetic processors’
being able to ’effeciently’ add and multiply integers, and also
argue that integer size does not blow-up.

I Clearly, adding or multiplying the b-bit integers given as input
can be done in constant time (As b is a constant and nothing
in these processes would then depend on n).

I However, the size of the sum of two m-bit integers will be at
most m + 1 bits (Since we can consider both summands to be
of size m, where m is the size of the larger summand).

I Similarly, the size of the product of an m-bit and an m
′
-bit

integer will be at most m + m
′

+ 3 bits. Both of these
observations follow from looking at the maximum value of the
product or sum.

More on ’Effecient’ Addition and Multiplication

I For the purposes of this presentation, we will consider a
rational number a to be represented as a pair of integers, a1
and a2, the numerator and the denominator respectively.

I The number of bits required to represent a is at most twice
the number of bits required to represent the larger of the two
numbers a1 and a2.

I For the next few slides, we will use the term ’size’ of a
rational a, S(a), to denote this number max(|a1|, |a2|). So
then the number of bits required to represent a is at most
twice the ’size’ of a.

I The product of two rational a and b, say c = a · b is
represented as (c1, c2) = (a1 · b1, a2 · b2). Clearly S(c) is at
most S(a) + S(b) + 3.

More on ’Effecient’ Addition and Multiplication

I Similarly, say c = a/b, then (c1, c2) = (a1 · b2, a2 · b1). Clearly
S(c) is at most S(a) + S(b) + 3.

I The sum of two rational a and b, say c = a + b is represented
as (c1, c2) = (a1 · b2 + b1 · a2, a2 · b2). Clearly S(c) is at most
S(a) + S(b) + 4.

I Negation of a rational can by convention be obtained by
negating the numerator, and negative rationals can by
convention be represented with a negative numerator.

I The computation of the difference of two rationals should
follow naturally from this convention and the computation of
a sum (A Turing Machine can encode the integers using any
enumeration, it will not not affect our results).

More on ’Effecient’ Addition and Multiplication

I We will now prove that the ’arithmetic’ processors can indeed
perform ’effecient computation’. What we meant by this is
that each arithmetic processor can be replaced with processors
that conform to the definition of processors in effecient parallel
computation defined in Lecture 9, and still have the whole
computation be in NC (While the output remains unchanged).

I Clearly processors performing arithmetic on input integers of
b-bit length each can do so in constant time, with constant
memory and need not be replaced.

I As long as we can show that the integers being multiplied or
added by any ’arithmetic processors’ have size bounded by a
polynomial function in nb, say (nb)c , each arithmetic
processors can be replaced by at most O((nb)2c) processors,
taking O(log((nb)c)) time to give the same output as the
’arithmetic processor’.

More on ’Effecient’ Addition and Multiplication

I After replacing all the arithmetic processors, the number of
processors has been increased by a factor polynomial in nb,
and the time taken to decide has been increased by a factor of
O(log nb).

I Thus a language L that can be decided efficiently in parallel
using ’arithmetic processors’ (w.r.t n), can also be decided
efficiently in parallel using processors that have O(log n2b)
bits of memory and perform a poly-time computation at every
step (w.r.t. (nb)).

I The most ’taxing’ computation an arithmetic processor would
have to do in the evaluation of C is Nn · P.

More on ’Effecient’ Addition and Multiplication

I To obtain the elements of P, we needed to compute Ai ,
1 ≤ i ≤ n. All elements of A are given to be b-bit integers.
An element of A2 = B is obtained by summing n products of
two b-bit integers . This value is at most n times the value of
the largest of these products (Like
S(bij) ≤ S(

∑n
k=1 |aik · akj |) ≤ S(n · |aik ′ · ak ′ j |) for some k

′
).

Thus the size of an element of A2 is at most log n + 2 · b + 6.

I Now any element of A3 = C is obtained as
S(cij) ≤ S(

∑n
k=1 |bik · akj |) ≤ S(n · |bik ′ · ak ′ j |) for some k

′
.

So any element of A3 is of size at most
log n + S(bik ′) + S(ak ′ j) + 6 ≤ 2 · log n + 3 · b + 12.

I In this manner, an element of An has size at most
b + (n − 1)(log n + b + 6), which can be easily shown to be
polynomial in nb.

I Hence computation of Ai is in NC, with traditional processors
as well.

More on ’Effecient’ Addition and Multiplication

I The largest elements of P or N involve Pn, the trace of An.

I The size of any element of P or N is then at most

n + (nb)c
′
≤ (nb)c . This is because these elements contain

sums of n elements of An in the numerator, and integers less
than n, and thus of size ≤ log n, in the denominator.

I The notion of size used in this section is that explained above,
which differs by a factor of 2 from the number of bits required.

I By the same argument as above, the largest element of Nn

can then be obtained to be of size at most ((nb)c)d = (nb)cd ,
which is still polynomial in nb.

I To work this out, let N2 = M, then
S(mij) ≤ S(

∑n
k=1 |S(nik · nkj |) ≤ S(n · |nik ′ · nk ′ j |) for some

k
′ ∈ [n].

More on ’Effecient’ Addition and Multiplication

I It is useful to note that it is easy to reduce the rational to a
’lowest terms form’ since division is also in NC.

I In the earlier manner, an element of Nn has size at most
(nb)c + (n − 1)(log n + (nb)c + 6), which can be easily shown

to be ≤ (nb)d
′
, for some constant d

′
.

I Thus in the computation of Nn · P, n products of integers
whose size is polynomial in (nb) are computed, implying that
the size of the products are also polynomial, and then added,
all of which can be done in NC.

I Hence even the most taxing computation required of an
arithmetic circuit have inputs of polynomial size, implying that
all ’arithmetic processors’ can be replaced by regular
processors without losing efficient parallel computation.

Conclusion

Thus we have shown that given A = (aij)i ,j∈[n], a matrix where all
aij ’s are b-bit integers, the following can be computed in
(log nb)O(1) time using (nb)O(1) many processors:

1. The characteristic polynomial of A, pA(x)

2. The determinant of A, det(A)

3. The inverse of A, A−1

References

1. Lectures 30-31 of (Texts and Monographs in Computer
Science) Dexter C. Kozen - The Design and Analysis of
Algorithms.

2. Lectures 4-6 of Chandan Saha’s course “Topics in Complexity
Theory” from Spring 2015.

