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History & Background

Definition: A matching in an undirected graph is a set of  
edges in the graph such that no two edges have a common 
vertex.

A maximum matching is a matching with the maximum 
cardinality.

A perfect matching is a matching that contains all vertices 
in the graph. It is maximum.



History & Background
1. Lovász gave an algorithm to solve the decision problem of  

existence of  a perfect matching. It used Tutte’s theorem to 
reduce the problem to testing singularity of  an integer matrix. 
This yielded an 𝑅𝑁𝐶2 algorithm for the decision problem.

2. The search problem of  finding a perfect matching is much 
harder. The first parallel algorithm (𝑅𝑁𝐶3) was given by Karp, 
Upfal, Wigderson.



The Isolating Lemma

Definition: A set system (𝑆, 𝐹) consists of  a finite set of  
elements 𝑆 = {𝑥1, 𝑥2,… , 𝑥𝑛} and a family 𝐹 of  subsets of  𝑆, 
i.e., 𝐹 = 𝑆1, 𝑆2,… , 𝑆𝑘 , where 𝑆𝑗 ⊆ 𝑆 for 1 ≤ 𝑗 ≤ 𝑘. 

We assign weights 𝑤𝑖 to each element 𝑥𝑖 ∈ 𝑆 and define the 
weight of  a set 𝑆𝑗 as σ𝑥𝑖∈𝑆𝑗

𝑤𝑖.



The Isolating Lemma

Lemma 1. Let 𝑆, 𝐹 be a set system whose elements are 
assigned integer weights chosen uniformly and 
independently from 1, 2𝑛 ∩ ℤ. Then,



The Isolating Lemma: Proof

Proof. Pick some element 𝑥𝑖 and fix all weights other than 
𝑤𝑖. Define threshold of  𝑥𝑖 to be the real number 𝛼𝑖 such 
that if  𝑤𝑖 ≤ 𝛼𝑖 then 𝑥𝑖 would be contained in some 
minimum weight set 𝑆𝑗 in 𝐹, and if  𝑤𝑖 > 𝛼𝑖 then 𝑥𝑖 is in no 
minimum weight set in 𝐹 (the degenerate case where 𝑥𝑖 is 
not in any set in 𝐹 can be safely ignored for now).

Such an 𝛼𝑖 exists.



The Isolating Lemma: Proof
Observation 1. If  𝑤𝑖 < 𝛼𝑖 then 𝑥𝑖 must be in every MWS in 𝐹.

Observation 2. If  𝑤𝑖 = 𝛼𝑖 then there would be at least one 
MWS that contains 𝑥𝑖 and one which does not. In this case, we 
say 𝑥𝑖 is ambiguous.



The Isolating Lemma: Proof
Now, when it comes to choosing 𝑤𝑖, we note that 𝛼𝑖 is a 
function of  weights other than 𝑤𝑖; since the weights are 
independent, 𝛼𝑖 is independent of  𝑤𝑖.

Since 𝑤𝑖 is a uniformly distributed integer from 1, 2𝑛 ∩ ℤ,

This inequality also holds in the case where 𝑥𝑖 does not appear 
in any set, since in that case it is never ambiguous.



The Isolating Lemma: Proof
Since 𝑆 has 𝑛 elements,



The Isolating Lemma: Proof

Thus, with probability at least 
1

2
, no element is ambiguous. In 

these situations, each element is either in every MWS or in 
none. Thus, in these situations, the minimum weight set of  𝐹 is 
unique.

(By the same argument, the maximum weight set of  𝐹 will be 

unique with probability 
1

2
as well.)





Tutte Matrix 
Definition: Given an undirected graph 𝐺 = (𝑉, 𝐸), its Tutte matrix 𝑇 (named 
after William Thomas Tutte) can be obtained from its adjacency matrix by 
replacing all the 1’s above the diagonal with variable 𝑥𝑖,𝑗 and replacing the 1’s 

below the diagonal with variable −𝑥𝑗,𝑖 . The zeroes remain as is. Note that 𝑇 is a 
skew symmetric matrix. Formally, 



Tutte Matrix

Example of  the Tutte Matrix of  given graph:



Theorem by Tutte: Proof

Theorem. Given an undirected graph 𝐺 = (𝑉, 𝐸), let its 
Tutte matrix be 𝑇. Then det 𝑇 ≠ 0 if  and only if  𝐺 has a 
perfect matching.



Theorem by Tutte: Proof
Proof. We know det 𝑇 = σ𝜎∈𝑆𝑛

sign(𝜎)ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖)

Let value 𝜎 =ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖).

We look at the cycle cover of  𝜎 ∈ 𝑆𝑛, namely 𝐻𝜎. If  𝐻𝜎 has a 
self-loop, then 𝜎 has a fixed point (at say a point 𝑗). By 
definition, 𝑇𝑗,𝑗 = 0 which implies ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) = 0 for those 
permutations. 



Theorem by Tutte: Proof

Observation 3. For any 𝜎 ∈ 𝑆𝑛, ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖) ≠ 0 if  and only 

if  ∀𝑖 ∈ 1,2…𝑛, the edge 𝑖, 𝜎(𝑖) ∈ 𝐸. 

Definition. Call the subgraph of  𝐺 containing the edges 
𝑖, 𝜎 𝑖 ∀𝑖 ∈ {1,2,… , 𝑛} be the trail of  𝜎.



Theorem by Tutte: Proof  
If 𝜎 has only even cycles, then we can easily get a perfect matching for it. 
If  ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) ≠ 0, then the trail of  𝜎 has a perfect matching, implying 
𝐺 has the same perfect matching. 

What about covers with odd cycle lengths? 

Consider a 𝜎 ∈ 𝑆𝑛 which contains an odd cycle (cycle with odd number 
of  vertices) and let 𝜏 be the permutation obtained by reversing one of  its 
odd cycles. Then, sign𝜎 = sign 𝜏. This is because the sign() function can 
be alternatively characterized as: −1 if  it has an odd number of  even 
length cycles, 1 otherwise. 



Theorem by Tutte: Proof  
Also, ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) = −ς𝑖=1
𝑛 𝑇𝑖,𝜏(𝑖) . This is because 𝑇 is a skew-symmetric 

matrix. WLOG, let the odd cycle of  𝜎 be (1 2 3 … 𝑗) and that of  𝜏 is (𝑗 𝑗 −
1 …1). So 

If  𝜎 has a fixed point or an odd cycle length, the sum 
σ𝜎 sign(𝜎)ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) = 0 over such 𝜎. 

For fixed point permutation, they contribute nothing to the sum. 



Theorem by Tutte: Proof  
Also, ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) = −ς𝑖=1
𝑛 𝑇𝑖,𝜏(𝑖) . This is because 𝑇 is a skew-symmetric 

matrix. WLOG, let the odd cycle of  𝜎 be (1 2 3 … 𝑗) and that of  𝜏 is (𝑗 𝑗 −
1 …1). So 

If  𝜎 has a fixed point or an odd cycle length, the sum σ𝜎 sign(𝜎)ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖) =

0 over such 𝜎.

If  the permutation has an odd length cycle, we can obtain another 
permutation by reversing the odd length cycle containing the lowest numbered 
vertex. So, from the previous claim, their sums will cancel out. 



Theorem by Tutte: Proof  
If  𝜎 does not contain a self  loop or odd cycle length, then all its 
cycles are of  even length. ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) is then a monomial, and the 

only way to get another monomial in the sum det(𝑇) is to exchange 
one of  the cycles of  𝜎 and obtain 𝜎′. This exchange does not 
change the sign() of  the permutation and, from the previous slide, 
ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖) = ς𝑖=1

𝑛 𝑇𝑖,𝜎′(𝑖)

So, this monomial never cancels, and det 𝑇 ≠ 0 if  ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖) ≠ 0.



Theorem by Tutte: Proof  
In summary: If  𝐺 = 𝑉, 𝐸 contains a perfect matching, say 
𝑀, then we can get a permutation 𝜎 from it which is made of  
length 2 cycles. Since this is made of  even length cycles only, and 
𝑖, 𝜎 𝑖 ∈ 𝐸 ∀𝑖 = 1,2…𝑛, ς𝑖=1

𝑛 𝑇𝑖,𝜎(𝑖) ≠ 0 implying det 𝑇 ≠ 0.

On the other hand, if  det 𝑇 ≠ 0, there is some 𝜎 ∈ 𝑆𝑛 composed 
entirely of  even cycles such that ς𝑖=1

𝑛 sgn(𝜎)𝑇𝑖,𝜎(𝑖) ≠ 0. We can 

construct a perfect matching for 𝐺 with this 𝜎.



Finding perfect matching
Consider an undirected graph 𝐺 = (𝑉, 𝐸). We consider 𝐸 and the set 
of  perfect matchings in 𝐺 (all subsets of  𝐸) to be a set system. We 
assign random weights to each edge, chosen uniformly and 
independently from 1,2…2𝑚 , where 𝑚 is the number of  
edges.(m = |𝐸|)

From the isolating lemma, the minimum weight matching will be 

unique with probability 
1

2
. We will find out this matching. 



Finding perfect matching
Let 𝐵 be the matrix obtained by substituting 𝑥𝑖,𝑗 = 2𝑤𝑖,𝑗 , where 𝑤𝑖,𝑗 is the 
weight of  the {𝑖, 𝑗} edge. More formally, 

𝐵 is still skew-symmetric. 



Lemma 2

Lemma 2. Suppose an undirected graph G = 𝑉, 𝐸 has a 
unique minimum weight matching of  weight W.22𝑊is the 
highest power of  2 that divides |det𝐵|.



Lemma 2: Proof
det 𝐵 = σ𝜎∈𝑆𝑛

sgn(𝜎)ς𝑖=1
𝑛 𝑇𝑖,𝜎(𝑖). From the proof  of  Tutte’s theorem, 

summands of  permutations with odd cycles or fixed points cancel out, so we 
consider only permutations with even cycles.

For the permutation corresponding to the unique minimum weight  perfect 
matching of  𝐺, call it 𝜎. This is a permutation consisting of  even cycles with 

length 2, and hence for each 𝑖, 𝜎 𝜎 𝑖 = 𝑖. So, 𝑤𝑖,𝜎(𝑖) = 𝑤𝜎 𝑖 ,𝑖, and it follows 
that



Lemma 2: Proof
We will show for all other even cycle permutations, the value of  the 
permutation is a higher power of  2 than 22𝑊. It follows that the det is a 
sum = ±22𝑊 1 + … where the rest are even integers (this also proves 
that det 𝐵 ≠ 0). Adding one to them results in an odd integer, and the 
result follows.

If  𝜎′ corresponds to another matching of  𝐺, then say its weight is 
a > W. So, its value 22𝑎 is a higher power of  2 than 22𝑊.

If  𝜏 does not correspond to a matching in 𝐺 (but is still made of  even 
length cycles), then we can partition an even cycle into two possible 
matchings. This way we get two perfect matchings, 𝑀1, 𝑀2.



Lemma 2: Proof
We will show for all other even cycle permutations, the value of  the 
permutation is a higher power of  2 than 22𝑊. It follows that the det is a sum 
= ±22𝑊 1 + … where the rest are even integers (this also proves that 
det𝐵 ≠ 0). Adding one to them results in an odd integer, and the result 
follows.

If  𝜎′ corresponds to another matching of  𝐺, then say its weight is 𝑎 > 𝑊.
So, its value 22𝑎 is a higher power of  2 than 22𝑊.

The union of  these two matchings is the trail of  𝜏, and hence 𝑣𝑎𝑙𝑢𝑒 𝜏 =
2𝑤 𝑀1 +𝑤 𝑀2 > 22𝑊. 





Lemma 3
Lemma 3. Let 𝑀 be the unique minimum weight matching in 
𝐺, and let 𝑊 be its weight. The edge (𝑣𝑖 , 𝑣𝑗) belongs to 𝑀 iff



Lemma 3: Proof

Proof. We make the following observation.

Observation 4. 



Lemma 3: Proof

Since 𝑛 is even, any odd cycle in the trail of  a (non-vanishing) 
permutation has a counterpart permutation with the odd cycle 
in reverse (argued in Lemma 2). These therefore cancel out and 
do not contribute to 𝐵𝑖𝑗 2

𝑤𝑖𝑗.



Lemma 3: Proof

If  𝑣𝑖 , 𝑣𝑗 ∈ 𝑀 (recall: 𝑀 is the minimum weight matching)
then the permutation whose trail is 𝑀 gives a term in the 
summation equal to ±22𝑤, and all other permutations give 
terms equal to higher powers of  two (possible negated).

If 𝑣𝑖 , 𝑣𝑗 ∉ 𝑀, then permutations give terms with higher 
powers of  two.



Lemma 3

Thus, iff 𝑣𝑖 , 𝑣𝑗 ∈ 𝑀

Which is odd.





Algorithm to find perfect matching
Step 1: Compute 𝐵 and obtain 𝑊.

Step 2: Compute 𝑎𝑑𝑗 𝐵 .

Step 3: For each edge {𝑖, 𝑗}, do in parallel:

◦Compute 

◦ If  this is odd, include 𝑖, 𝑗 in the matching.



Algorithm to find perfect matching
From the isolating lemma, this algorithm succeeds with probability 

at least 
1

2
(can be increased).

Finding the determinant and adjoint of  a matrix can be done by 
Pan’s randomized matrix-inversion algorithm, requiring 
𝑂(log2 𝑛) time and 𝑂 𝑛3.5𝑚 processors for an 𝑛 × 𝑛 matrix with 
𝑚 bit integers. 

Since this is the only computationally significant step, perfect 
matching is as easy as matrix inversion, and is in 𝑅𝑁𝐶2. 





Parallel Algorithms for related problems
•Finding a minimum weight perfect matching in a graph given 
weights 𝑤(𝑒) for each edge 𝑒 ∈ 𝐸 in unary. For binary is still 
unresolved.

•Finding a maximum matching in a graph: extend G into a complete 
graph, with all old edges weighted 0 and new edges weighted 1. 
Find a minimum weight perfect matching for this new graph.



Parallel Algorithms for related problems
•The vertex weighted matching problem: Given a positive weight for 
each vertex of  𝐺, find a matching whose vertex weight is 
maximum (vertex weight is the sum of  all the weights of  the 
vertices covered in the matching).



Isolating Lemma applications
Parallel complexity of  search vs decision problems: One can reduce a 
general search problem to the weighted decision problem (using the 
polynomial-ly bound weights from the isolating lemma). 



Isolating Lemma applications
Consider a graph with a subset of  𝐸′ ⊆ 𝐸 of  ‘red’ edges. Given 
number 𝑘, find a perfect matching with exactly 𝑘 ‘red’ edges.



Isolating Lemma applications
Consider a graph with a subset of  𝐸′ ⊆ 𝐸 of  ‘red’ edges. Given 
number 𝑘, find a perfect matching with exactly 𝑘 ‘red’ edges.

Given polynomial-ly bounded edge weights 𝑤𝑒, say there is a 
unique minimum weight perfect matching with 𝑘 red edges. In the 
Tutte matrix, substitute 2𝑤𝑒 for 𝑥𝑒 if  𝑒 is not a red edge, and 2𝑤𝑒𝑦
otherwise for a variable 𝑦. Compute the Pfaffian of  the matrix by 
square rooting the determinant, and the power of  2 in the 
coefficient of  𝑦𝑘 is the weight of  the required minimum weight 
perfect matching.



Isolating Lemma applications
Randomized Reductions: Valiant and Vazirani have shown the 
complexity of  finding solutions to instances of  SAT having unique 
solutions is NP-hard under randomized reductions. 

The paper offers a simpler proof  using the isolating lemma, 
reducing CLIQUE to UNIQUE CLIQUE.  



Discussion
In the case of  perfect matchings, assigning weights from 1,2𝑛
should suffice, where 𝑛 is the number of  vertices. This improves 
the processor and time efficiency of  the algorithm. 

The question remains whether maximum matching is in 
deterministic NC. 

The decision problem for bipartite graphs is in known to be in NC.



FIN


