E0 224: Computational Complexity Theory Indian Institute of Science Assignment 1

Due date: Sep 16, 2021

Total marks: 50

1. (9 marks)

- (a) (2 marks) Let $L_1, L_2 \in \mathsf{NP}$. Are $L_1 \cup L_2$ and $L_1 \cap L_2$ also in NP ?
- (b) (3 marks) Let $L_1, L_2 \in \mathsf{NP} \cap \mathsf{co-NP}$. Show that $L_1 \oplus L_2 \in \mathsf{NP} \cap \mathsf{co-NP}$, where $L_1 \oplus L_2 := \{x : x \text{ is in exactly one of } L_1, L_2\}$.
- (c) (4 marks) Let QUADEQ be the language of all satisfiable sets of quadratic equations over 0/1 variables (a quadratic equation over $u_1, ..., u_n$ has the form $\sum_{i,j\in[n]} a_{i,j}u_iu_j + \sum_{i\in[n]} a_iu_i = b$) where addition is modulo 2. Show that QUADEQ is NP-complete.
- 2. (5 marks) Design a deterministic polynomial-time algorithm to solve the 2SAT problem (i.e., when every clause of the input CNF formula has at most 2 literals).
- 3. (6 marks) Let PRIMES = {n : n is a prime}. Show that PRIMES \in NP. You may use the following fact: A number n is prime if and only if for every prime factor r of n 1, there exists a number $a \in \{2, ..., n 1\}$ satisfying $a^{n-1} = 1 \mod n$ but $a^{\frac{n-1}{r}} \neq 1 \mod n$.
- 4. (6 marks) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a bijection that maps *n*-bit integers to *n*-bit integers. Such a *f* is a *one-way function* if *f* is polynomial-time computable, but f^{-1} is not. Show that if *f* is a one-way function, then the language $L_f := \{(x, y) : f^{-1}(x) < y\} \in \mathsf{NP} \cap \mathsf{co-NP}$, but L_f is not in P .
- 5. (7 marks) Let PARTITION = $\{(x_1, \ldots, x_n) \in \mathbb{Z}^n : \text{there exists } S \subset [n] \text{ such that } \sum_{i \in S} x_i = \sum_{i \neq S} x_i\}$. Prove that PARTITION is NP-complete.
- 6. (9 marks) Prove that there exists a language B such that $NP^B \neq \text{co-}NP^B$.
- 7. (8 points) A language L is sparse if there exists a constant c such that for every integer $n \ge 1$, the number of strings of length n belonging to L is bounded by n^c . Show that if a sparse language is NP-complete then P = NP.