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About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Computational problems come in various flavors:  

                    a. Decision problem 

                    b. Search problem 

                    c. Counting problem 

                    d. Optimization problem  

  Example:  Find a minimum size vertex cover in a graph 



About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Algorithms are methods for solving problems; they 
are studied using formal models of computation, like 
Turing machines.      

                      • a memory with head (like a RAM) 
• a finite control (like a processor) 

 

       (…more later in this lecture) 
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About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Computational resources (required by models of 
computation) can be: 

                     • Time  (bit operations) 
• Space  (memory cells) 
• Random bits (magic bits:  0 w. p ½ and 1 w.p ½ ) 
• Communication  (bit exchanges) 



  

 

 

 

Basic 
Complexity 

theory 

Structural 
complexity 
        

Circuit 
complexity 

Randomness in 
computation 

Counting 
Complexity 

Hardness of 
Approximation 

Topics to be covered in this course 



Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 • How hard is it to check satisfiability of a Boolean formula?  
• What if the formula has exactly one or no satisfying assignment? 
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• How much space is required to check s-t connectivity? 



Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 Space bounded computation. 

 Polynomial Hierarchy (PH). 

 

 
co-NP NP 

P 

. 

. 

. 
• How hard is it to check if the largest 

independent set in G has size k ? 
 

• How hard is it to check if there is a 
circuit of size k that computes the same 
Boolean function as a given Boolean 
circuit C ? 

 



Circuit Complexity 

 The internal workings of an algorithm can be 
viewed as a Boolean circuit -- a nice 
combinatorial model of computation that is 
closely related to Turing Machines.  

 The size, depth & width of a circuit correspond 
to the sequential, parallel & space complexity, 
respectively, of the algorithm that it represents.  

 

 

 



Circuit Complexity 

 The internal workings of an algorithm can be 
viewed as a Boolean circuit -- a nice 
combinatorial model of computation that is 
closely related to Turing Machines.  

 The size, depth & width of a circuit correspond 
to the sequential, parallel & space complexity, 
respectively, of the algorithm that it represents.  

 Proving P ≠ NP reduces to showing circuit 
lower bounds. 

 

 

 

• We will see lower bounds for restricted classes of circuits. 



Randomness in Computation 

 Probabilistic complexity classes (BPP, RP, co-RP). 

 
• Does randomization help in improving efficiency? 
• Quicksort has O(n log n) expected time but O(n^2) worst 

case time. 
• Can SAT be solved in polynomial time using randomness? 

 
Theorem (Schoening, 1999):  3SAT can be solved in  
randomized O((4/3)n) time. 



Counting Complexity 

 Counting complexity classes (class #P). 

 

 
• How hard is it to count the number of perfect matchings 

in a graph? 
• How hard is it to count the number of cycles in a graph? 
• Is counting much harder than the corresponding decision 

problem? 
 



Hardness of Approximation 

 Probabilistically Checkable Proofs (PCPs). 

 

 
 Hardness of approximation results. 

Theorem (Hastad, 1997):  If there’s a poly-time algorithm  
to compute an assignment that satisfies at least 7/8 + 𝛆 
fraction of the clauses of an input 3SAT, for any constant  𝛆 > 0, then P = NP. 



Course Info 

 Course no.:  E0 224         Credits:   3:1  

 Instructor:  Chandan Saha 

 Lecture time:  M, W  2-3:30 pm.   Venue:  GMeet 

 

 Link:  meet.google.com/aab-vqzy-weu 

 Course homepage: 

   https://www.csa.iisc.ac.in/~chandan/courses/complexity21/home.html 

 

 

 
 



Course Info 

 Prerequisites:  Basic familiarity with algorithms;  

            Mathematical maturity. 

 

 Primary reference: Computational Complexity – A 
Modern Approach by Sanjeev Arora and Boaz Barak. 

 

 Lectures:  Slides will be posted on the course 
homepage. Recordings will also be shared. 

 Number of lectures:  ~25.  

 

 



Course Info 

 Communications: All course related communications 
will happen over a Google group. I’ll share the group-id 
after Aug 16 (course registration deadline). 

 Google form: Need to fill in a Google form. Link will be 
shared in class after Aug 16. Requires sign-in to Gmail. 

 

 Till Aug 16, links to the recordings will be provided on 
the course homepage.  

 Subsequent recordings will be shared with the Google 
group. Lecture videos will appear in your Google drive. 

 

 



Course Info 

 

 Grading policy:  Three assignments - 45% 

     One presentation - 25%  

     Final exam - 30% 
 

 

 
 



Assignments 

 First assignment: Will posted on Aug 31; due date 
will be Sep 14. 

 Second assignment: Will posted on Sep 30; due 
date will be Oct 14. 

 Third assignment: Will posted on Oct 31; due date 
will be Nov 14. 

 Mode:  Assignments will be posted on the course 
homepage. You need to e-mail me your assignment as 
a pdf file (use Latex). (Will use Moodle if required.) 
 

 

 



Presentations 

 A group of 2 students would present a paper/result. 

 Duration of a presentation:  ~45 mins 

 Mode: Pre-recorded talks using slides. 

 

 I will start giving topics to present from Sep 15. All 
topics will be handed out by Oct 15. 

 You get 4 weeks to prepare a presentation. 
 

 

 

 



Final exam 

 Would be a one-on-one ~1 hr long oral exam, if 
there aren’t many students crediting the course. 

   

 Else, it would be a one-day long take-home exam. 
 

 

 

 
 



Let’s begin… 



Turing Machines 

 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  
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 Turing machines              A mathematical way to 

                                        describe algorithms. 
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    (e.g. of a physical realization of a TM is a simple adder) 

• Memory tape(s) 
• A finite set of rules 
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by a tuple (Γ, Q, δ) such that 
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Turing Machines 

 Definition.  A k-tape Turing Machine M is described 
by a tuple (Γ, Q, δ) such that 

 M has k memory tapes (input/work/output tapes) 
with heads; 

 Γis a finite set of alphabets. (Every memory cell 
contains an element of Γ) 
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k k k 

known as transition function; it captures the 
dynamics of M 



Turing Machines:  Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 



Turing Machines:  Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 
 

 Computation. 

 A step of computation is performed by applying δ. 
 

 Halting. 

 Once the machine enters qhalt it stops computation. 

 



Turing Machines:  Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 



Turing Machines:  Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 

 Definition. M computes f in T(|x|) time, if for every x 
in {0,1}*, M halts within T(|x|) steps of computation 
and outputs f(x).  

 



Turing Machines 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 



Turing Machines 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 

 Can every computational problem be solved using 
Turing machines? 

 
 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

  

 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 A typical input instance: 

 

  

 

x2y + 5y3 = 3 
 
x2 + z5 – 3y2 = 0 
 
y2 – 4z6 = 0 

Integer solutions for x, y, z? 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

                              (Hilbert’s tenth problem, 1900) 
  

 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

 Theorem. There doesn’t exist any algorithm (realizable by a 
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970) 

  



Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 
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Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 

 Several other computational models can be 
simulated by TMs. 

 Possible exception:  Quantum machines! 



Basic facts about TMs 



Turing Machines 

 Time constructible functions.  A function T:  
is time constructible if T(n) ≥ n and there’s a TM that 
computes the function that maps x to T(|x|) in 
O(T(|x|)) time.  

 

 Examples:  T(n) = n2, or 2n, or n log n 

in binary 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 A single tape suffices. 

 If a TM M computes f in T(n) time using k tapes then 
there’s another TM M’ that computes f in time 5k . T(n)2 
using a single tape that is used for input, work and output. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

             …simply encode the description of the TM. 
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 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

                  …invalid strings map to a fixed, trivial TM. 
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 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

            … allow padding with arbitrary number of 0’s 
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 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

                        α                    Mα 

{0,1} string TM corresponding to α 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

 A TM (i.e., its string representation) can be given as 
an input to another TM !! 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 

 Physical realization of UTMs are modern day 
electronic computers.  



Complexity classes 
       P and FP 
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 In the initial part of this course, we’ll focus primarily 
on decision problems.  
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 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 

 Decision problems can be naturally identified with 
Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 

 Boolean functions can be naturally identified with 
sets of {0,1} strings, also called languages. 



Decision Problems 

 

Decision problems       Boolean functions       Languages 

 

 Definition.  We say a TM M decides a language L ⊆ {0,1}* 
if M computes fL, where fL(x) = 1 if and only if x ∈ L. 
 

The characteristic function of L . 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 

Deterministic polynomial-time 


