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About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Computational problems come in various flavors:  

                    a. Decision problem 

                    b. Search problem 

                    c. Counting problem 

                    d. Optimization problem  

  Example:  Find a minimum size vertex cover in a graph 



About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Algorithms are methods for solving problems; they 
are studied using formal models of computation, like 
Turing machines.      

                      • a memory with head (like a RAM) 
• a finite control (like a processor) 

 

       (…more later in this lecture) 
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About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Computational resources (required by models of 
computation) can be: 

                     • Time  (bit operations) 
• Space  (memory cells) 
• Random bits (magic bits:  0 w. p ½ and 1 w.p ½ ) 
• Communication  (bit exchanges) 
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Topics to be covered in this course 



Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 • How hard is it to check satisfiability of a Boolean formula?  
• What if the formula has exactly one or no satisfying assignment? 



Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 Space bounded computation. 
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Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 Space bounded computation. 

 Polynomial Hierarchy (PH). 

 

 
co-NP NP 

P 

. 

. 

. 
• How hard is it to check if the largest 

independent set in G has size k ? 
 

• How hard is it to check if there is a 
circuit of size k that computes the same 
Boolean function as a given Boolean 
circuit C ? 

 



Circuit Complexity 

 The internal workings of an algorithm can be 
viewed as a Boolean circuit -- a nice 
combinatorial model of computation that is 
closely related to Turing Machines.  

 The size, depth & width of a circuit correspond 
to the sequential, parallel & space complexity, 
respectively, of the algorithm that it represents.  

 

 

 



Circuit Complexity 

 The internal workings of an algorithm can be 
viewed as a Boolean circuit -- a nice 
combinatorial model of computation that is 
closely related to Turing Machines.  

 The size, depth & width of a circuit correspond 
to the sequential, parallel & space complexity, 
respectively, of the algorithm that it represents.  

 Proving P ≠ NP reduces to showing circuit 
lower bounds. 

 

 

 

• We will see lower bounds for restricted classes of circuits. 



Randomness in Computation 

 Probabilistic complexity classes (BPP, RP, co-RP). 

 
• Does randomization help in improving efficiency? 
• Quicksort has O(n log n) expected time but O(n^2) worst 

case time. 
• Can SAT be solved in polynomial time using randomness? 

 
Theorem (Schoening, 1999):  3SAT can be solved in  
randomized O((4/3)n) time. 



Counting Complexity 

 Counting complexity classes (class #P). 

 

 
• How hard is it to count the number of perfect matchings 

in a graph? 
• How hard is it to count the number of cycles in a graph? 
• Is counting much harder than the corresponding decision 

problem? 
 



Hardness of Approximation 

 Probabilistically Checkable Proofs (PCPs). 

 

 
 Hardness of approximation results. 

Theorem (Hastad, 1997):  If there’s a poly-time algorithm  
to compute an assignment that satisfies at least 7/8 + 𝛆 
fraction of the clauses of an input 3SAT, for any constant  𝛆 > 0, then P = NP. 



Course Info 

 Course no.:  E0 224         Credits:   3:1  

 Instructor:  Chandan Saha 

 Lecture time:  M, W  2-3:30 pm.   Venue:  GMeet 

 

 Link:  meet.google.com/aab-vqzy-weu 

 Course homepage: 

   https://www.csa.iisc.ac.in/~chandan/courses/complexity21/home.html 

 

 

 
 



Course Info 

 Prerequisites:  Basic familiarity with algorithms;  

            Mathematical maturity. 

 

 Primary reference: Computational Complexity – A 
Modern Approach by Sanjeev Arora and Boaz Barak. 

 

 Lectures:  Slides will be posted on the course 
homepage. Recordings will also be shared. 

 Number of lectures:  ~25.  

 

 



Course Info 

 Communications: All course related communications 
will happen over a Google group. I’ll share the group-id 
after Aug 16 (course registration deadline). 

 Google form: Need to fill in a Google form. Link will be 
shared in class after Aug 16. Requires sign-in to Gmail. 

 

 Till Aug 16, links to the recordings will be provided on 
the course homepage.  

 Subsequent recordings will be shared with the Google 
group. Lecture videos will appear in your Google drive. 

 

 



Course Info 

 

 Grading policy:  Three assignments - 45% 

     One presentation - 25%  

     Final exam - 30% 
 

 

 
 



Assignments 

 First assignment: Will posted on Aug 31; due date 
will be Sep 14. 

 Second assignment: Will posted on Sep 30; due 
date will be Oct 14. 

 Third assignment: Will posted on Oct 31; due date 
will be Nov 14. 

 Mode:  Assignments will be posted on the course 
homepage. You need to e-mail me your assignment as 
a pdf file (use Latex). (Will use Moodle if required.) 
 

 

 



Presentations 

 A group of 2 students would present a paper/result. 

 Duration of a presentation:  ~45 mins 

 Mode: Pre-recorded talks using slides. 

 

 I will start giving topics to present from Sep 15. All 
topics will be handed out by Oct 15. 

 You get 4 weeks to prepare a presentation. 
 

 

 

 



Final exam 

 Would be a one-on-one ~1 hr long oral exam, if 
there aren’t many students crediting the course. 

   

 Else, it would be a one-day long take-home exam. 
 

 

 

 
 



Let’s begin… 



Turing Machines 

 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  
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 Turing machines              A mathematical way to 

                                        describe algorithms. 
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 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  

 A TM consists of: 

 

 

    (e.g. of a physical realization of a TM is a simple adder) 

• Memory tape(s) 
• A finite set of rules 

 



Turing Machines 

 Definition.  A k-tape Turing Machine M is described 
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 Definition.  A k-tape Turing Machine M is described 
by a tuple (Γ, Q, δ) such that 

 M has k memory tapes (input/work/output tapes) 
with heads; 

 Γis a finite set of alphabets. (Every memory cell 
contains an element of Γ) 

 Q is a finite set of states.  (special states: qstart , qhalt) 

 δ is a function from Q x Γ  to Q x Γ x {L,S,R} 
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known as transition function; it captures the 
dynamics of M 



Turing Machines:  Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 



Turing Machines:  Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 
 

 Computation. 

 A step of computation is performed by applying δ. 
 

 Halting. 

 Once the machine enters qhalt it stops computation. 

 



Turing Machines:  Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 



Turing Machines:  Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 

 Definition. M computes f in T(|x|) time, if for every x 
in {0,1}*, M halts within T(|x|) steps of computation 
and outputs f(x).  
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 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 



Turing Machines 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 

 Can every computational problem be solved using 
Turing machines? 

 
 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

  

 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 A typical input instance: 

 

  

 

x2y + 5y3 = 3 
 
x2 + z5 – 3y2 = 0 
 
y2 – 4z6 = 0 

Integer solutions for x, y, z? 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

                              (Hilbert’s tenth problem, 1900) 
  

 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  

 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

 Theorem. There doesn’t exist any algorithm (realizable by a 
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970) 

  



Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 
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Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 

 Several other computational models can be 
simulated by TMs. 

 Possible exception:  Quantum machines! 



Basic facts about TMs 



Turing Machines 

 Time constructible functions.  A function T:  
is time constructible if T(n) ≥ n and there’s a TM that 
computes the function that maps x to T(|x|) in 
O(T(|x|)) time.  

 

 Examples:  T(n) = n2, or 2n, or n log n 

in binary 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 A single tape suffices. 

 If a TM M computes f in T(n) time using k tapes then 
there’s another TM M’ that computes f in time 5k . T(n)2 
using a single tape that is used for input, work and output. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

             …simply encode the description of the TM. 
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                  …invalid strings map to a fixed, trivial TM. 
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 Every TM has infinitely many string representations. 

            … allow padding with arbitrary number of 0’s 

 

                                          



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

                        α                    Mα 

{0,1} string TM corresponding to α 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

 A TM (i.e., its string representation) can be given as 
an input to another TM !! 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 

 Physical realization of UTMs are modern day 
electronic computers.  



Complexity classes 
       P and FP 
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on decision problems.  
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Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 

 Decision problems can be naturally identified with 
Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 

 Boolean functions can be naturally identified with 
sets of {0,1} strings, also called languages. 



Decision Problems 

 

Decision problems       Boolean functions       Languages 

 

 Definition.  We say a TM M decides a language L ⊆ {0,1}* 
if M computes fL, where fL(x) = 1 if and only if x ∈ L. 
 

The characteristic function of L . 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 

Deterministic polynomial-time 


