
Computational Complexity Theory

Lecture 1: Intro; Turing machines; Class P

Department of Computer Science,
Indian Institute of Science

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 Example: Is vertex t reachable from vertex s in graph G?

 Is n a prime number?

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 Example: Find a satisfying assignment for a Boolean formula.

 Find a prime between n and 2n.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 c. Counting problem

 Example: Count the number of cycles in a graph.

 Count the number of perfect matchings in a graph.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 c. Counting problem

 d. Optimization problem

 Example: Find a minimum size vertex cover in a graph

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Algorithms are methods for solving problems; they
are studied using formal models of computation, like
Turing machines.

 • a memory with head (like a RAM)
• a finite control (like a processor)

 (…more later in this lecture)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational resources (required by models of
computation) can be:

 • Time (bit operations)
• Space (memory cells)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational resources (required by models of
computation) can be:

 • Time (bit operations)
• Space (memory cells)
• Random bits (magic bits: 0 w. p ½ and 1 w.p ½)
• Communication (bit exchanges)

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 • How hard is it to check satisfiability of a Boolean formula?
• What if the formula has exactly one or no satisfying assignment?

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 Space bounded computation.

• How much space is required to check s-t connectivity?

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 Space bounded computation.

 Polynomial Hierarchy (PH).

co-NP NP

P

.

.

.
• How hard is it to check if the largest

independent set in G has size k ?

• How hard is it to check if there is a
circuit of size k that computes the same
Boolean function as a given Boolean
circuit C ?

Circuit Complexity

 The internal workings of an algorithm can be
viewed as a Boolean circuit -- a nice
combinatorial model of computation that is
closely related to Turing Machines.

 The size, depth & width of a circuit correspond
to the sequential, parallel & space complexity,
respectively, of the algorithm that it represents.

Circuit Complexity

 The internal workings of an algorithm can be
viewed as a Boolean circuit -- a nice
combinatorial model of computation that is
closely related to Turing Machines.

 The size, depth & width of a circuit correspond
to the sequential, parallel & space complexity,
respectively, of the algorithm that it represents.

 Proving P ≠ NP reduces to showing circuit
lower bounds.

• We will see lower bounds for restricted classes of circuits.

Randomness in Computation

 Probabilistic complexity classes (BPP, RP, co-RP).

• Does randomization help in improving efficiency?
• Quicksort has O(n log n) expected time but O(n^2) worst

case time.
• Can SAT be solved in polynomial time using randomness?

Theorem (Schoening, 1999): 3SAT can be solved in
randomized O((4/3)n) time.

Counting Complexity

 Counting complexity classes (class #P).

• How hard is it to count the number of perfect matchings

in a graph?
• How hard is it to count the number of cycles in a graph?
• Is counting much harder than the corresponding decision

problem?

Hardness of Approximation

 Probabilistically Checkable Proofs (PCPs).

 Hardness of approximation results.

Theorem (Hastad, 1997): If there’s a poly-time algorithm
to compute an assignment that satisfies at least 7/8 + 𝛆
fraction of the clauses of an input 3SAT, for any constant 𝛆 > 0, then P = NP.

Course Info

 Course no.: E0 224 Credits: 3:1

 Instructor: Chandan Saha

 Lecture time: M, W 2-3:30 pm. Venue: GMeet

 Link: meet.google.com/aab-vqzy-weu

 Course homepage:

 https://www.csa.iisc.ac.in/~chandan/courses/complexity21/home.html

Course Info

 Prerequisites: Basic familiarity with algorithms;

 Mathematical maturity.

 Primary reference: Computational Complexity – A
Modern Approach by Sanjeev Arora and Boaz Barak.

 Lectures: Slides will be posted on the course
homepage. Recordings will also be shared.

 Number of lectures: ~25.

Course Info

 Communications: All course related communications
will happen over a Google group. I’ll share the group-id
after Aug 16 (course registration deadline).

 Google form: Need to fill in a Google form. Link will be
shared in class after Aug 16. Requires sign-in to Gmail.

 Till Aug 16, links to the recordings will be provided on
the course homepage.

 Subsequent recordings will be shared with the Google
group. Lecture videos will appear in your Google drive.

Course Info

 Grading policy: Three assignments - 45%

 One presentation - 25%

 Final exam - 30%

Assignments

 First assignment: Will posted on Aug 31; due date
will be Sep 14.

 Second assignment: Will posted on Sep 30; due
date will be Oct 14.

 Third assignment: Will posted on Oct 31; due date
will be Nov 14.

 Mode: Assignments will be posted on the course
homepage. You need to e-mail me your assignment as
a pdf file (use Latex). (Will use Moodle if required.)

Presentations

 A group of 2 students would present a paper/result.

 Duration of a presentation: ~45 mins

 Mode: Pre-recorded talks using slides.

 I will start giving topics to present from Sep 15. All
topics will be handed out by Oct 15.

 You get 4 weeks to prepare a presentation.

Final exam

 Would be a one-on-one ~1 hr long oral exam, if
there aren’t many students crediting the course.

 Else, it would be a one-day long take-home exam.

Let’s begin…

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

• Memory tape(s)
• A finite set of rules

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 Turing machines A mathematical way to

 describe algorithms.

• Memory tape(s)
• A finite set of rules

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 (e.g. of a physical realization of a TM is a simple adder)

• Memory tape(s)
• A finite set of rules

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

has a blank symbol

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

known as transition function; it captures the
dynamics of M

Turing Machines: Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

Turing Machines: Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

 Computation.

 A step of computation is performed by applying δ.

 Halting.

 Once the machine enters qhalt it stops computation.

Turing Machines: Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

Turing Machines: Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

 Definition. M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

Turing Machines

 In this course, we would be dealing with

 Turing machines that halt on every input.

 Computational problems that can be solved by Turing
machines.

Turing Machines

 In this course, we would be dealing with

 Turing machines that halt on every input.

 Computational problems that can be solved by Turing
machines.

 Can every computational problem be solved using
Turing machines?

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 A typical input instance:

x2y + 5y3 = 3

x2 + z5 – 3y2 = 0

y2 – 4z6 = 0

Integer solutions for x, y, z?

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

 (Hilbert’s tenth problem, 1900)

Turing Machines: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

 Theorem. There doesn’t exist any algorithm (realizable by a
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970)

Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

 Several other computational models can be
simulated by TMs.

Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

 Several other computational models can be
simulated by TMs.

 Possible exception: Quantum machines!

Basic facts about TMs

Turing Machines

 Time constructible functions. A function T:
is time constructible if T(n) ≥ n and there’s a TM that
computes the function that maps x to T(|x|) in
O(T(|x|)) time.

 Examples: T(n) = n2, or 2n, or n log n

in binary

Turing Machines: Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

Turing Machines: Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

 A single tape suffices.

 If a TM M computes f in T(n) time using k tapes then
there’s another TM M’ that computes f in time 5k . T(n)2
using a single tape that is used for input, work and output.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 …simply encode the description of the TM.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 …invalid strings map to a fixed, trivial TM.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 … allow padding with arbitrary number of 0’s

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 α Mα

{0,1} string TM corresponding to α

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 A TM (i.e., its string representation) can be given as
an input to another TM !!

Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

 Physical realization of UTMs are modern day
electronic computers.

Complexity classes
 P and FP

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

 Boolean functions can be naturally identified with
sets of {0,1} strings, also called languages.

Decision Problems

Decision problems Boolean functions Languages

 Definition. We say a TM M decides a language L ⊆ {0,1}*
if M computes fL, where fL(x) = 1 if and only if x ∈ L.

The characteristic function of L .

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Deterministic polynomial-time

