
Computational Complexity Theory

Lecture 10: Space complexity classes

Department of Computer Science,

Indian Institute of Science

Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

 Definition. Let S: be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

 Definition. Let S: be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s nondeterministic choices.

Space bounded computation

 We’ll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

 If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

Space bounded computation

 We’ll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

 If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

 Definition. Let S: be a function. S is space
constructible if S(n) ≥ log n and there’s a TM that
computes S(|x|) from x using O(S(|x|)) space.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

Hopcroft, Paul & Valiant 1977

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Proof. Uses the notion of configuration graph of a TM.
We’ll see this shortly.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Caution. The Hopcroft-Paul-Valiant theorem does not
imply P ⊊ PSPACE.

 Open. Is P ≠ PSPACE ?

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Follows from the above theorem

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Run through all possible
choices of certificates of the
verifier and reuse space.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

NP co-NP

P

EXP

PSPACE

NL

L

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

NP co-NP

P

EXP

PSPACE

NL

L

Homework: Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

Configuration graph

 Definition. A configuration of a TM M on input x, at any
particular step of its execution, consists of

 (a) the nonblank symbols of its work tapes,

 (b) the current state,

 (c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Configuration graph

 Definition. A configuration of a TM M on input x, at any
particular step of its execution, consists of

 (a) the nonblank symbols of its work tapes,

 (b) the current state,

 (c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Input head
index

Work tape
head index

bS(n)
State info

Content of work tape A Configuration C

b1 …

Configuration graph

 Definition. A configuration of a TM M on input x, at any
particular step of its execution, consists of

 (a) the nonblank symbols of its work tapes,

 (b) the current state,

 (c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Input head
index

Work tape
head index

bS(n)
State info b1 …

Note: A configuration C can be represented using O(S(n))
bits if M uses S(n) = 𝞨(log n) space on n-bit inputs.

Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

 Number of nodes in GM,x = 2O(S(n)), if M uses S(n)
space on n-bit inputs

Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

 If M is a DTM then every node C in GM,x has at most
one outgoing edge. If M is an NTM then every node C
in GM,x has at most two outgoing edges.

Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

C1

C2
C2

C1

C3

δ1 δ1

δ0

Conf. graph of a DTM
Conf. graph of an NTM

… …

…

Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

 By erasing the contents of the work tape at the end,
bringing the head at the beginning, and having a qaccept
state, we can assume that there’s a unique Caccept
configuration. Configuration Cstart is well defined.

Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

 M accepts x if and only if there’s a path from Cstart to
Caccept in GM,x.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Proof. Let L ∈ NSPACE(S(n)) and M be an NTM
deciding L using O(S(n)) space on length n inputs.

 On input x, compute the configuration graph GM,x of
M and check if there’s a path from Cstart to Caccept .
Running time is 2O(S(n)).

Natural problems?

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

 Are there natural problems in L, NL and PSPACE ?

c > 0

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

NP co-NP

P

EXP

PSPACE

NL

L
PATH

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

 Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Initialize to s Count = m

log n log n

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

 Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Initialize to s Count = m Guess a vertex v1

If there’s a edge from s to
v1, decrease count by 1.
Else o/p 0 and stop.

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

 Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Set to v1 Count = m-1 Guess a vertex v2

If there’s a edge from v1 to
v2, decrease count by 1.
Else o/p 0 and stop.

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

 Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Set to v2 Count = m-2 Guess a vertex v3

If there’s a edge from v2 to
v3, decrease count by 1.
Else o/p 0 and stop.

…and so on.

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

 Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Set to vm-1 Count = 1 Set to t

If there’s a edge from vm-1
to t, o/p 1 and stop.
Else o/p 0 and stop.

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

 Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Set to vm-1 Count = 1 Set to t

If there’s a edge from vm-1
to t, o/p 1 and stop.
Else o/p 0 and stop. Space complexity = O(log n)

UPATH: A problem in L

 UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

 Theorem (Reingold 2005). UPATH is in L.

NP co-NP

P

EXP

PSPACE

NL

L
UPATH

UPATH: A problem in L

 UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

 Theorem (Reingold 2005). UPATH is in L.

NP co-NP

P

EXP

PSPACE

NL

L
UPATH

Is PATH in L ?
 If yes, then L = NL !
 (will prove later)

Space Hierarchy Theorem

 Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g
are space-constructible functions and f(n) = o(g(n)),
then SPACE(f(n)) ⊊ SPACE(g(n)).

 Proof. Homework.

 Theorem. L ⊊ PSPACE.

PSPACE = NPSPACE

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof. Let L ∈ NSPACE(S(n)), and M be an NTM
requiring O(S(n)) space to decide L. We’ll show that
there’s a TM N requiring O(S(n)2) space to decide L.

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof. Let L ∈ NSPACE(S(n)), and M be an NTM
requiring O(S(n)) space to decide L. We’ll show that
there’s a TM N requiring O(S(n)2) space to decide L.

 On input x, N checks if there’s a path from Cstart to
Caccept in GM,x as follows: Let |x| = n.

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof. (contd.) N computes m = O(S(n)), the no. of
bits required to represent a configuration of M. It also
finds out Cstart and Caccept. Then N checks if there’s a
path from Cstart to Caccept of length at most 2m in GM,x

recursively using the following procedure.

 REACH(C1, C2, i) : returns 1 if there’s a path from C1
to C2 of length at most 2i in GM,x; 0 otherwise.

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof. (contd.) N computes m = O(S(n)), the no. of
bits required to represent a configuration of M. It also
finds out Cstart and Caccept. Then N checks if there’s a
path from Cstart to Caccept of length at most 2m in GM,x

recursively using the following procedure.

 REACH(C1, C2, i) : returns 1 if there’s a path from C1
to C2 of length at most 2i in GM,x; 0 otherwise.

Space constructibility of S(n) used here

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 REACH(C1, C2, i) {

 If i = 0 check if C1 and C2 are adjacent.

 Else, for every configurations C,

 a1 = REACH(C1, C, i-1)

 a2 = REACH(C, C2, i-1)

 if a1=1 & a2=1, return 1. Else return 0.

 }

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 REACH(C1, C2, i) {

 If i = 0 check if C1 and C2 are adjacent.

 Else, for every configurations C,

 a1 = REACH(C1, C, i-1)

 a2 = REACH(C, C2, i-1)

 if a1=1 & a2=1, return 1. Else return 0.

 }

Require O(S(n)) space

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 REACH(C1, C2, i) {

 If i = 0 check if C1 and C2 are adjacent.

 Else, for every configurations C,

 a1 = REACH(C1, C, i-1)

 a2 = REACH(C, C2, i-1)

 if a1=1 & a2=1, return 1. Else return 0.

 }

Reuse space

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 Space(i) = Space(i-1) + O(S(n))

 Space complexity: O(S(n)2)

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 Space(i) = Space(i-1) + O(S(n))

 Space complexity: O(S(n)2)

 Time(i) = 2m.2.Time(i-1) + O(S(n))

 Time complexity: 2O(S(n))

2

Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 Space(i) = Space(i-1) + O(S(n))

 Space complexity: O(S(n)2)

 Time(i) = 2m.2.Time(i-1) + O(S(n))

 Time complexity: 2O(S(n))

2

Recall, NSPACE(S(n)) ⊆ DTIME(2O(S(n))).
There’s an algorithm with time complexity
2O(S(n)), but higher space requirement.

PSPACE-completeness

PSPACE-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ?

PSPACE-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ? …use poly-time Karp reduction!

 Definition. A language L’ is PSPACE-hard if for every L
in PSPACE, L ≤p L’. Further, if L’ is in PSPACE then L’
is PSPACE-complete.

A PSPACE-complete problem

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ? …use poly-time Karp reduction!

 Example. L’ = {(M,w,1m) : M accepts w using m space}

Natural PSPACE-complete problem

 Definition. A quantified Boolean formula (QBF) is a
formula of the form

 Q1x1 Q2x2 … Qnxn ϕ(x1, x2, …, xn)

 A QBF is either true or false as all variables are
quantified. This is unlike a formula we’ve seen before
where variables were unquantified/free.

Quantifiers ∃ or ∀ Just a formula on
Boolean variables

Natural PSPACE-complete problem

 Example. ∃x1 ∃x2 … ∃xn ϕ(x1, x2, …, xn)

 The above QBF is true iff ϕ is satisfiable.

 We could have defined SAT as

 SAT = {∃x ϕ(x) : ϕ is a CNF and ∃x ϕ(x) is true}

 instead of

 SAT = {ϕ(x) : ϕ is a CNF and ϕ is satisfiable}

Natural PSPACE-complete problem

 Definition. A quantified Boolean formula (QBF) is a
formula of the form

 Q1x1 Q2x2 … Qnxn ϕ(x1, x2, …, xn)

 Homework: By using auxiliary variables (as in the
proof of Cook-Levin) and introducing some more ∃
quantifiers at the end, we can assume w.l.o.g. that ϕ is
a 3CNF.

Quantifiers ∃ or ∀ Just a formula on
Boolean variables

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

