
Computational Complexity Theory

Lecture 11: PSPACE-completeness;

 Log-space reductions

Department of Computer Science,
Indian Institute of Science

Recap: Time versus space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Recap: Time versus space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

NP co-NP

P

EXP

PSPACE

NL

L

Recap: PATH is in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

NP co-NP

P

EXP

PSPACE

NL

L
PATH

Recap: UPATH is in L

 UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

 Theorem (Reingold 2005). UPATH is in L.

NP co-NP

P

EXP

PSPACE

NL

L
UPATH

Is PATH in L ?
 If yes, then L = NL !
 (will prove later)

Recap: Space Hierarchy Theorem

 Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g
are space-constructible functions and f(n) = o(g(n)),
then SPACE(f(n)) ⊊ SPACE(g(n)).

 Proof. Homework.

 Theorem. L ⊊ PSPACE.

Recap: Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof. Uses a recursive algorithm for reachability.

 Space(i) = Space(i-1) + O(S(n))

 Space complexity: O(S(n)2)

 Time(i) = 2m.2.Time(i-1) + O(S(n))

 Time complexity: 2O(S(n))

2

Recall, NSPACE(S(n)) ⊆ DTIME(2O(S(n))).
There’s an algorithm with time complexity
2O(S(n)), but higher space requirement.

PSPACE-completeness

PSPACE-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ?

PSPACE-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ? …use poly-time Karp reduction!

 Definition. A language L’ is PSPACE-hard if for every L
in PSPACE, L ≤p L’. Further, if L’ is in PSPACE then L’
is PSPACE-complete.

A PSPACE-complete problem

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ? …use poly-time Karp reduction!

 Example. L’ = {(M,w,1m) : M accepts w using m space}

Natural PSPACE-complete problem

 Definition. A quantified Boolean formula (QBF) is a
formula of the form

 Q1x1 Q2x2 … Qnxn ϕ(x1, x2, …, xn)

 A QBF is either true or false as all variables are
quantified. This is unlike a formula we’ve seen before
where variables were unquantified or free.

Quantifiers ∃ or ∀ Just a formula on
Boolean variables

Natural PSPACE-complete problem

 Example. ∃x1 ∃x2 … ∃xn ϕ(x1, x2, …, xn)

 The above QBF is true iff ϕ is satisfiable.

 We could have defined SAT as

 SAT = {∃x ϕ(x) : ϕ is a CNF and ∃x ϕ(x) is true}

 instead of

 SAT = {ϕ(x) : ϕ is a CNF and ϕ is satisfiable}

Natural PSPACE-complete problem

 Definition. A quantified Boolean formula (QBF) is a
formula of the form

 Q1x1 Q2x2 … Qnxn ϕ(x1, x2, …, xn)

 Homework: By using auxiliary variables (as in the
proof of Cook-Levin) and introducing some more ∃
quantifiers at the end, we can assume w.l.o.g. that ϕ is
a 3CNF.

Quantifiers ∃ or ∀ Just a formula on
Boolean variables

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: Easy to see that TQBF is in PSPACE – just
think of a suitable recursive procedure. We’ll now
show that every L ∈ PSPACE reduces to TQBF via
poly-time Karp reduction…

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

 x ∈ L ψx is a true QBF
f

Size of ψx must be bounded
by poly(n), where |x| = n

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

 x ∈ L ψx is a true QBF

Idea: Form ψx in such a way that ψx is true iff there’s a path from
Cstart to Caccept in GM,x.

f

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in GM,x.

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in GM,x. Then, it forms a semi-QBF
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path
from C1 to C2 of length at most 2i in GM,x.

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in GM,x. Then, it forms a semi-QBF
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path
from C1 to C2 of length at most 2i in GM,x.

The variables corresponding to the bits of C1
and C2 are unquantified/free variables of Δi

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as
follows:

 (first attempt)

 Δi(C1,C2) = ∃C (Δi-1(C1,C) ∧ Δi-1(C,C2))
Issue: Size of Δi is twice the size of Δi-1 !!

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as
follows:

 (careful attempt)

 Δi(C1,C2) = ∃C ∀D1∀D2

 (((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2)) Δi-1(D1,D2))

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as
follows:

 (careful attempt)

 Δi(C1,C2) = ∃C ∀D1∀D2

 (¬((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2)) ∨ Δi-1(D1,D2))

Note: Size of Δi = O(S(n)) + Size of Δi-1

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

 But, we need to specify how to form Δ0(C1,C2).

 Size of ψx = O(S(n)2) + Size of Δ0

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

 But, we need to specify how to form Δ0(C1,C2).

 Size of ψx = O(S(n)2) + Size of Δ0

 Remark: We can easily bring all the quantifiers at the
beginning in ψx (as in a prenex normal form).

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

 But, we need to specify how to form Δ0(C1,C2).

 Size of ψx = O(S(n)2) + Size of Δ0

??

Adjacent configurations

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n))
inputs such that for every inputs C1 and C2,
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring
configurations in GM,x .

 Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C1 and C2 it
checks if C2 is a neighbor of C1 in GM,x.

Adjacent configurations

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n))
inputs such that for every inputs C1 and C2,
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring
configurations in GM,x .

 Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C1 and C2 it
checks if C2 is a neighbor of C1 in GM,x. Applying ideas
from the proof of Cook-Levin theorem, we get our
desired ϕM,x of size O(S(n)2).

Size of Δ0

 Obs. We can convert the circuit ϕM,x(C1, C2) to a
quantified CNF Δ0(C1,C2) by introducing auxiliary
variables (as in the proof of Cook-Levin theorem).

 Hence, size of Δ0(C1,C2) is O(S(n)2).

 Therefore, size of ψx = O(S(n)2).

Other PSPACE complete problems

 Checking if a player has a winning strategy in certain
two-player games, like (generalized) Hex, Reversi,
Geography etc.

 Integer circuit evaluation (Yang 2000).

 Implicit graph reachability.

 Check the wiki page:
https://en.wikipedia.org/wiki/List_of_PSPACE-
complete_problems

NL-completeness

NL-completeness

 Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is L = NL ?

NL-completeness

 Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is L = NL ? …poly-time (Karp) reductions are much
too powerful for L.

 We need to define a suitable ‘log-space’ reduction.

Log-space reductions

 x f(x)

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

Log-space TM

…unless we restrict |f(x)| = O(log |x|), in which case
we’re severely restricting the power of the reduction.

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Definition: A function f : {0,1}* {0,1}* is implicitly log-
space computable if

 1. |f(x)| ≤ |x|c for some constant c,

 2. The following two languages are in L :

Log-space TM

Lf = {(x, i) : f(x)i = 1} and L’f = {(x, i) : i ≤ |f(x)|}

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Definition: A language L1 is log-space reducible to a
language L2, denoted L1 ≤l L2, if there’s an implicitly
log-space computable function f such that

 x ∈ L1 f(x) ∈ L2

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: Let f be the reduction from L1 to L2, and g the
reduction from L2 to L3. We’ll show that the function
h(x) = g(f(x)) is implicitly log-space computable which
will suffice as,

Log-space TM

x ∈ L1 f(x) ∈ L2 g(f(x)) ∈ L3

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …Think of the following log-space TM that
computes h(x)i from (x, i). Let

Log-space TM

 Mf be the log-space TM that computes f(x)j from (x, j),

 Mg be the log-space TM that computes g(y)i from (y, i).

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). Space usage = O(log |f(x)|) + O(log |x|).

Log-space TM

stores Mg’s current configuration

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). Space usage = O(log |x|).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). This shows Lh is in L.

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …Similarly, L’h is in L and so h is implicitly log-
space computable.

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ∈ L then L1 ∈ L.

 Proof: Same ideas. (Homework)

Log-space TM

