
Computational Complexity Theory

 Lecture 13: Polynomial Hierarchy

Department of Computer Science,
Indian Institute of Science

Problems between NP & PSPACE

 There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP.

 Example.

 Eq-DNF = {(ϕ,k): ϕ is a DNF and there’s a DNF ψ

 of size ≤ k that is equivalent to ϕ}

 Two Boolean formulas on the same input variables are
equivalent if their evaluations agree on every
assignment to the variables.

Problems between NP & PSPACE

 There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP.

 Example.

 Eq-DNF = {(ϕ,k): ϕ is a DNF and there’s a DNF ψ

 of size ≤ k that is equivalent to ϕ}

 Is Eq-DNF in NP? …if we give a DNF ψ as a
certificate, it is not clear how to efficiently verify that
ψ and ϕ are equivalent. (W.l.o.g. k ≤ size of ϕ .)

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

 Obs. Eq-DNF is in ∑2.

 Proof. Think of u as another DNF ψ and v as an
assignment to the variables. Poly-time TM M checks if
ψ has size ≤ k and ϕ(v) = ψ(v).

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

 Obs. Eq-DNF is in ∑2.

 Proof. Think of u as another DNF ψ and v as an
assignment to the variables. Poly-time TM M checks if
ψ has size ≤ k and ϕ(v) = ψ(v).

 Remark. (Masek 1979) Even if ϕ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete.

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

 Another example.

Succinct-SetCover = {(ϕ1,…ϕm,k): ϕi’s are DNFs and there’s an

 S ⊆[m] of size ≤ k s.t. ⋁i∈S ϕi is a tautology}

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

 Obs. (Homework) Succinct-SetCover is in ∑2.

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

 Obs. (Homework) Succinct-SetCover is in ∑2.

 Other natural problems in PH: “Completeness in the
Polynomial-Time Hierarchy: A Compendium” by Schaefer
and Umans (2008).

Class ∑2

 Definition. A language L is in ∑2 if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

 Obs. P ⊆ NP ⊆ ∑2.

Class ∑i

 Definition. A language L is in ∑i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u1 ∈ {0,1}q(|x|) ∀u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∃ or ∀ if i is odd or even, respectively.

 Obs. ∑i ⊆ ∑i+1 for every i.

Polynomial Hierarchy

 Definition. A language L is in ∑i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u1 ∈ {0,1}q(|x|) ∀u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∃ or ∀ if i is odd or even, respectively.

 Definition. (Meyer & Stockmeyer 1972)

 PH = ∪ ∑i .
i ∈ N

∑0 = P

∑1 = NP

∑2

∑3

.

.

.

Class ∏i

 Definition. ∏i = co-∑i = { L : L ∈ ∑i }.

 Obs. A language L is in ∏i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∀ or ∃ if i is odd or even, respectively.

Class ∏i

 Definition. ∏i = co-∑i = { L : L ∈ ∑i }.

 Obs. A language L is in ∏i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∀ or ∃ if i is odd or even, respectively.

 Obs. ∑i ⊆ ∏i+1 ⊆ ∑i+2 .

Polynomial Hierarchy

 Obs. PH = ∪ ∑i = ∪ ∏i .

i ∈ N i ∈ N

∑0 = P

∑1 = NP

∑2

∑3

.

.

.

∏1 = co-NP

∏2

∏3

PH =

Polynomial Hierarchy

 Claim. PH ⊆ PSPACE .

 Proof. Similar to the proof of TQBF ∈ PSPACE.

∑0 = P

∑1 = NP

∑2

∑3

.

.

.

∏1 = co-NP

∏2

∏3

PH

PSPACE

Does PH collapse?

 General belief. Just as many of us believe P ≠ NP (i.e.
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also
believe that for every i, ∑i ≠ ∑i+1 and ∑i ≠ ∏i .

 Definition. We say PH collapses to the i-th level if
∑i = ∑i+1 . (justified in the next theorem)

 Conjecture. There is no i such that PH collapses to
the i-th level.

Does PH collapse?

 General belief. Just as many of us believe P ≠ NP (i.e.
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also
believe that for every i, ∑i ≠ ∑i+1 and ∑i ≠ ∏i .

 Definition. We say PH collapses to the i-th level if
∑i = ∑i+1 . (justified in the next theorem)

 Conjecture. There is no i such that PH collapses to
the i-th level.

This is stronger than the P ≠ NP conjecture.

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof.

∑i

∑i+1

∏i

∏i+1

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof.

∑i

∑i+1

∏i

∏i+1

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof.

∑i

∑i+1

∏i

∏i+1

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof.

∑i

∑i+1

∏i

∏i+1

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof.

∑i

∑i+1

∏i

∏i+1

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Define L’ = {(x, u1): ∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1}

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Clearly, L’ is in ∏i+1 = ∑i .

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Also, x ∈ L ∃u1 s.t. (x, u1) ∈ L’.

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Also, x ∈ L ∃u1 ∃v1∀v2 … Qivi
 s.t. N(x, u1,v1…, vi) = 1,

where N is a poly-time TM.

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Also, x ∈ L ∃u1 ∃v1∀v2 … Qivi
 s.t. N(x, u1,v1…, vi) = 1.

 Merge the quantifiers

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Also, x ∈ L ∃v’1∀v2 … Qivi
 s.t. N(x, v’1…, vi) = 1.

PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

 Goal is to show that ∑i+1 = ∑i+2 .

 Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+2ui+2
 s.t. M(x, u1, …, ui+2) = 1.

 Hence, L is a language in ∑i = ∑i+1 .

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Define L’ = {(x, u1): ∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1}

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Clearly, L’ is in ∏i = ∑i .

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Also, x ∈ L ∃u1 s.t. (x, u1) ∈ L’.

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Also, x ∈ L ∃u1 ∃v1∀v2 … Qivi
 s.t. N(x, u1,v1…, vi) = 1,

where N is a poly-time TM.

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Also, x ∈ L ∃u1 ∃v1∀v2 … Qivi
 s.t. N(x, u1,v1…, vi) = 1.

 Merge the quantifiers

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Also, x ∈ L ∃v’1∀v2 … Qivi
 s.t. N(x, v’1…, vi) = 1.

PH collapse theorems

 Theorem. If ∑i = ∏i then PH = ∑i .

 Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

 Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qi+1ui+1
 s.t. M(x, u1, …, ui+1) = 1.

 Hence, L is a language in ∑i .

Complete problems in PH ?

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PH ? …use poly-time Karp reduction!

 Definition. A language L’ is PH-hard if for every L in
PH, L ≤pL’. Further, if L’ is in PH then L’ is PH-complete.

Complete problems in PH ?

 Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)

Complete problems in PH ?

 Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)

 Observation. If PH has a complete problem then PH
collapses.

 Proof. If L is PH-complete then L is in ∑i for some i.
Now use the above fact to infer that PH = ∑i .

Complete problems in PH ?

 Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)

 Corollary. PH ⊊ PSPACE unless PH collapses.

EXP

PSPACE

PH

NP co-NP

P
NL

L

Complete problems in ∑i

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = ∑i ? …use poly-time Karp reduction!

 Definition. A language L’ is ∑i -hard if for every L in ∑i ,
L ≤p L’. Further, if L’ is in ∑i then L’ is ∑i -complete.

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete. (∑1-SAT is just SAT)

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Easy to see that ∑i-SAT is in ∑i .

 x = ∃v1∀v2 … Qivi
 ϕ(v1, …, vi)

 ∈ ∑i-SAT

 ∃u1∀u2 … Qiui
 s.t. M(x, u1, …, ui) = 1,

 where M outputs ϕ(u1, …, ui).

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Let L be a language in ∑i . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qiui
 s.t. M(x, u1, …, ui) = 1.

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Let L be a language in ∑i . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qiui
 s.t. ϕ(x, u1, …, ui) = 1.

Boolean circuit
 (by Cook-Levin)

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Let L be a language in ∑i . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qiui
 ϕ(x, u1, …, ui) is true .

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Let L be a language in ∑i . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qiui
 ϕ(x, u1, …, ui) is true .

 Issue: ϕ needn’t be a formula.

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Let L be a language in ∑i . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qiui
 ϕ(x, u1, …, ui) is true .

 Observation. From the proof of the Cook-Levin
theorem, we can assume that ϕ is a CNF (if i is odd)
or a DNF (if i is even). (Homework)

Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete.

 Proof. Let L be a language in ∑i . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u1∀u2 … Qiui
 ϕ(x, u1, …, ui) ∈ ∑i-SAT .

Other complete problems in ∑2

 Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium” by Schaefer and Umans (2008).

 Theorem. Eq-DNF and Succinct-SetCover are

 ∑2 -complete.

