Computational Complexity Theory Lecture 13: Polynomial Hierarchy Department of Computer Science, Indian Institute of Science #### Problems between NP & PSPACE There are decision problems that don't appear to be captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP. Example. ``` Eq-DNF = \{(\phi,k): \phi \text{ is a DNF and there's a DNF } \psi \text{ of size } \leq k \text{ that is } \underline{\text{equivalent}} \text{ to } \phi\} ``` Two Boolean formulas on the same input variables are equivalent if their evaluations agree on every assignment to the variables. #### Problems between NP & PSPACE There are decision problems that don't appear to be captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP. Example. ``` Eq-DNF = \{(\phi,k): \phi \text{ is a DNF and there's a DNF } \psi \text{ of size } \leq k \text{ that is equivalent to } \phi \} ``` • Is Eq-DNF in NP? ...if we give a DNF ψ as a certificate, it is not clear how to efficiently verify that ψ and φ are equivalent. (W.I.o.g. $k \le \text{size of } \varphi$.) • Definition. A language L is in \sum_2 if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1. ``` • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = 1.$ - Obs. Eq-DNF is in \sum_{2} . - Proof. Think of u as another DNF ψ and v as an assignment to the variables. Poly-time TM M checks if ψ has size $\leq k$ and $\phi(v) = \psi(v)$. • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = 1.$ - Obs. Eq-DNF is in \sum_{2} . - Proof. Think of u as another DNF ψ and v as an assignment to the variables. Poly-time TM M checks if ψ has size $\leq k$ and $\phi(v) = \psi(v)$. - Remark. (Masek 1979) Even if φ is given by its truth-table, the problem (i.e., DNF-MCSP) is NP-complete. • Definition. A language L is in \sum_2 if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1. ``` Another example. ``` Succinct-SetCover = \{(\phi_1,...\phi_m,k): \phi_i's are DNFs and there's an S \subseteq [m] of size \leq k s.t. \bigvee_{i \in S} \phi_i is a tautology\} ``` • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1. ``` • Obs. (Homework) Succinct-SetCover is in \sum_{2} . • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = 1.$ - Obs. (Homework) Succinct-SetCover is in \sum_{2} . - Other natural problems in PH: "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008). • Definition. A language L is in \sum_2 if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1. ``` • Obs. $P \subseteq NP \subseteq \sum_2$. • Definition. A language L is in \sum_{i} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} \ Q_i u_i \in \{0,1\}^{q(|x|)} s.t. M(x,u_1,...,u_i) = I, ``` where Q_i is \exists or \forall if i is odd or even, respectively. • Obs. $\sum_{i} \subseteq \sum_{i+1}$ for every i. ### Polynomial Hierarchy • Definition. A language L is in \sum_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $$x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \quad \forall u_2 \in \{0,1\}^{q(|x|)} \quad Q_i u_i \in \{0,1\}^{q(|x|)}$$ s.t. $M(x,u_1,...,u_i) = I$, where Q_i is \exists or \forall if i is odd or even, respectively. • Definition. (Meyer & Stockmeyer 1972) $$PH = \bigcup_{i \in N} \sum_{i}$$. $$\sum_{1}^{3} | \sum_{1}^{3} \sum_{1$$ # Class \prod_i - Definition. $\prod_i = co \sum_i = \{ L : \overline{L} \in \sum_i \}.$ - Obs. A language L is in \prod_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \ Q_i u_i \in \{0,1\}^{q(|x|)} s.t. M(x,u_1,...,u_i) = I, ``` where Q_i is \forall or \exists if i is odd or even, respectively. # Class \prod_i - Definition. $\prod_i = co \sum_i = \{ L : \overline{L} \in \sum_i \}.$ - Obs. A language L is in \prod_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $$x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \ Q_i u_i \in \{0,1\}^{q(|x|)}$$ s.t. $M(x,u_1,...,u_i) = I$, where Q_i is \forall or \exists if i is odd or even, respectively. • Obs. $\sum_{i} \subseteq \prod_{i+1} \subseteq \sum_{i+2}$. # Polynomial Hierarchy • Obs. PH = $$\bigcup_{i \in \mathbb{N}} \sum_{i} = \bigcup_{i \in \mathbb{N}} \prod_{i}$$. ### Polynomial Hierarchy - Claim. PH ⊆ PSPACE. - Proof. Similar to the proof of TQBF ∈ PSPACE. ### Does PH collapse? - General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{i} \neq \sum_{i}$) and $NP \neq co-NP$ (i.e. $\sum_{i} \neq \prod_{i}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$. - Definition. We say PH <u>collapses to the i-th level</u> if $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}$ - Conjecture. There is no i such that PH collapses to the i-th level. ### Does PH collapse? - General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{i} \neq \sum_{i}$) and $NP \neq co-NP$ (i.e. $\sum_{i} \neq \prod_{i}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$. - Definition. We say PH <u>collapses to the i-th level</u> if $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}$ - Conjecture. There is no i such that PH collapses to the i-th level. This is stronger than the $P \neq NP$ conjecture. • Theorem. If $\sum_{i} = \sum_{j+1}$ then PH = \sum_{i} . - Theorem. If $\sum_{i} = \sum_{j+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{j+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{j+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{j+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Define L' = $\{(x, u_1): \forall u_2 \dots Q_{i+2}u_{i+2} \text{ s.t. } M(x, u_1, \dots, u_{i+2}) = 1\}$ - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Clearly, L' is in $\prod_{i+1} = \sum_{i}$. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Also, $x \in L \iff \exists u_1 \text{ s.t. } (x, u_1) \in L'$. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i$ s.t. $N(x, u_1, v_1, \dots, v_i) = I$, where N is a poly-time TM. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. - $x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.$ - Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, u_1, v_1, \dots, v_i) = I$. Merge the quantifiers - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. - $x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.$ - Also, $x \in L \iff \exists v'_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, v'_1 \dots, v_i) = I.$ - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Hence, L is a language in $\sum_{i=1}^{n} = \sum_{i+1}^{n}$. • Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$. - Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Define L' = $\{(x, u_1): \forall u_2 \dots Q_{i+1}u_{i+1} \text{ s.t. } M(x, u_1, \dots, u_{i+1}) = 1\}$ - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Clearly, L' is in $\prod_i = \sum_i$. - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \implies \exists u_1 \text{ s.t. } (x, u_1) \in L'$. - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i$ s.t. $N(x, u_1, v_1, \dots, v_i) = I$, where N is a poly-time TM. - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, u_1, v_1, \dots, v_i) = I$. Merge the quantifiers - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \iff \exists v'_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, v'_1 \dots, v_i) = I.$ - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Hence, L is a language in \sum_{i} . - Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>. - What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class. - Is P = PH? ...use poly-time Karp reduction! • Definition. A language L' is *PH-hard* if for every L in PH, L \leq_{D} L'. Further, if L' is in PH then L' is *PH-complete*. • Fact. If L is poly-time reducible to a language in \sum_{i} then L is in \sum_{i} . (we've seen a similar fact for NP) - Fact. If L is poly-time reducible to a language in \sum_{i} then L is in \sum_{i} . (we've seen a similar fact for NP) - Observation. If PH has a complete problem then PH collapses. - Proof. If L is *PH-complete* then L is in \sum_i for some i. Now use the above fact to infer that $PH = \sum_i$. - Fact. If L is poly-time reducible to a language in \sum_{i} then L is in \sum_{i} . (we've seen a similar fact for NP) - Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>. - What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class. - Is $P = \sum_{i}$? ...use poly-time Karp reduction! - Definition. A language L' is \sum_{i} -hard if for every L in \sum_{i} , L \leq_{D} L'. Further, if L' is in \sum_{i} then L' is \sum_{i} -complete. - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. $(\sum_{i}$ -SAT is just SAT) - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Easy to see that \sum_{i} -SAT is in \sum_{i} . ``` x = \exists v_1 \forall v_2 \dots Q_i v_i \ \phi(v_1, \dots, v_i) \in \sum_i -SAT \exists u_1 \forall u_2 \dots Q_i u_i \quad s.t. \quad M(x, u_1, \dots, u_i) = I, where M outputs \phi(u_1, \dots, u_i). ``` - Definition. The language \sum_{i} -SAT contains all *true* QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \text{s.t.} \quad M(x, u_1, \dots, u_i) = I. ``` - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 \dots Q_i u_i \quad \text{s.t. } \phi(x, u_1, \dots, u_i) = I. Boolean circuit (by Cook-Levin) ``` - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \phi(x, u_1, \dots, u_i) is true. ``` • Definition. The language \sum_{i} -SAT contains all *true* QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \phi(x, u_1, \dots, u_i) is true. ``` • Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \phi(x, u_1, \dots, u_i) is true. ``` • Observation. From the proof of the Cook-Levin theorem, we can assume that φ is a CNF (if i is odd) or a DNF (if i is even). (Homework) - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \phi(x, u_1, \dots, u_i) \in \sum_i -SAT. ``` # Other complete problems in \sum_{2} Ref. "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008). • Theorem. Eq-DNF and Succinct-SetCover are \sum_2 -complete.