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Problems between NP & PSPACE 

 There are decision problems that don’t appear to be  
captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP. 

 

 Example.  

     Eq-DNF = {(ϕ,k):   ϕ is a DNF and there’s a DNF ψ  

                                of size ≤ k that is equivalent to ϕ} 

 Two Boolean formulas on the same input variables are 
equivalent if their evaluations agree on every 
assignment to the variables.  

                          



Problems between NP & PSPACE 

 There are decision problems that don’t appear to be  
captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP. 

 

 Example.  

     Eq-DNF = {(ϕ,k):   ϕ is a DNF and there’s a DNF ψ  

                                of size ≤ k that is equivalent to ϕ} 

 Is Eq-DNF in NP? …if we give a DNF ψ as a 
certificate, it is not clear how to efficiently verify that 
ψ and ϕ are equivalent. (W.l.o.g.  k ≤ size of ϕ .) 



Class ∑2 

 Definition. A language L is in ∑2 if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 
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   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 

 Obs. Eq-DNF is in ∑2. 

 Proof. Think of u as another DNF ψ and v as an 
assignment to the variables. Poly-time TM M checks if 
ψ has size ≤ k and ϕ(v) = ψ(v). 
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 Definition. A language L is in ∑2 if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 

 Obs. Eq-DNF is in ∑2. 

 Proof. Think of u as another DNF ψ and v as an 
assignment to the variables. Poly-time TM M checks if 
ψ has size ≤ k and ϕ(v) = ψ(v). 

 

 Remark. (Masek 1979) Even if ϕ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete. 



Class ∑2 

 Definition. A language L is in ∑2 if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 

 Another example.   

Succinct-SetCover = {(ϕ1,…ϕm,k):   ϕi’s are DNFs and there’s an  

                               S ⊆[m] of size ≤ k s.t. ⋁i∈S ϕi is a tautology} 



Class ∑2 

 Definition. A language L is in ∑2 if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 

 Obs. (Homework)  Succinct-SetCover is in ∑2. 



Class ∑2 

 Definition. A language L is in ∑2 if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 

 Obs. (Homework)  Succinct-SetCover is in ∑2. 

 

 Other natural problems in PH:  “Completeness in the 
Polynomial-Time Hierarchy:  A Compendium” by Schaefer 
and Umans (2008). 



Class ∑2 

 Definition. A language L is in ∑2 if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 

 Obs. P ⊆ NP ⊆ ∑2. 



Class ∑i 

 Definition. A language L is in ∑i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∃u1 ∈ {0,1}q(|x|)  ∀u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∃ or ∀ if i is odd or even, respectively. 

 

 Obs. ∑i ⊆ ∑i+1 for every i. 



Polynomial Hierarchy 

 Definition. A language L is in ∑i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∃u1 ∈ {0,1}q(|x|)  ∀u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∃ or ∀ if i is odd or even, respectively. 

 

 Definition. (Meyer & Stockmeyer 1972) 

                      PH = ∪ ∑i . 
i ∈ N 

∑0 = P 

∑1 = NP 

∑2  

∑3  

. 

. 

. 



Class ∏i 

 Definition.  ∏i  =  co-∑i  =  { L :  L ∈ ∑i }.  

 

 Obs. A language L is in ∏i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∀ or ∃ if i is odd or even, respectively. 



Class ∏i 

 Definition.  ∏i  =  co-∑i  =  { L :  L ∈ ∑i }.  

 

 Obs. A language L is in ∏i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∀ or ∃ if i is odd or even, respectively. 

 

 Obs. ∑i ⊆ ∏i+1 ⊆ ∑i+2 . 



Polynomial Hierarchy 

 Obs. PH = ∪ ∑i = ∪ ∏i . 

 
i ∈ N i ∈ N 

∑0 = P 

∑1 = NP 

∑2  

∑3  
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∏1 = co-NP 
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PH  =  



Polynomial Hierarchy 

 Claim. PH ⊆ PSPACE . 

 Proof.  Similar to the proof of  TQBF ∈ PSPACE.  

 

∑0 = P 

∑1 = NP 

∑2  

∑3  

. 

. 

. 

∏1 = co-NP 

∏2  

∏3  

PH 

PSPACE 



Does PH collapse? 

 General belief. Just as many of us believe P ≠ NP (i.e. 
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also 
believe that for every i,    ∑i ≠ ∑i+1   and   ∑i ≠ ∏i . 

    

 Definition. We say PH collapses to the i-th level if     
∑i = ∑i+1 .  (justified in the next theorem) 

 

 Conjecture. There is no i such that PH collapses to 
the i-th level.  
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∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also 
believe that for every i,    ∑i ≠ ∑i+1   and   ∑i ≠ ∏i . 

    

 Definition. We say PH collapses to the i-th level if     
∑i = ∑i+1 .  (justified in the next theorem) 

 

 Conjecture. There is no i such that PH collapses to 
the i-th level.  

This is stronger than the P ≠ NP conjecture. 



PH collapse theorems 

 Theorem. If ∑i = ∑i+1 then PH = ∑i . 
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PH collapse theorems 

 Theorem. If ∑i = ∑i+1 then PH = ∑i . 

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 . 

   Goal is to show that  ∑i+1 = ∑i+2 . 
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function q(.) and a poly-time TM M s.t. 
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    s.t.   M(x, u1, …, ui+2) = 1. 
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 Also, x ∈ L      ∃u1  s.t.  (x, u1) ∈ L’.  
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 Merge the quantifiers 



PH collapse theorems 

 Theorem. If ∑i = ∑i+1 then PH = ∑i . 

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 . 
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 Also, x ∈ L      ∃v’1∀v2 … Qivi
  s.t.  N(x, v’1…, vi) = 1. 

 



PH collapse theorems 

 Theorem. If ∑i = ∑i+1 then PH = ∑i . 

 Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 . 

   Goal is to show that  ∑i+1 = ∑i+2 . 
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 Hence, L is a language in ∑i = ∑i+1 .  
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 Theorem. If ∑i = ∏i then PH = ∑i . 

 Proof.  Goal is to show that ∑i = ∏i       ∑i = ∑i+1 . 
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function q(.) and a poly-time TM M s.t. 

   x ∈ L       ∃u1∀u2 … Qi+1ui+1
    s.t.   M(x, u1, …, ui+1) = 1. 

 

 Define L’ = {(x, u1): ∀u2 … Qi+1ui+1
  s.t.  M(x, u1, …, ui+1) = 1} 
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 Theorem. If ∑i = ∏i then PH = ∑i . 

 Proof.  Goal is to show that ∑i = ∏i       ∑i = ∑i+1 . 
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function q(.) and a poly-time TM M s.t. 
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  s.t.  N(x, u1,v1…, vi) = 1.  

 Merge the quantifiers 



PH collapse theorems 

 Theorem. If ∑i = ∏i then PH = ∑i . 

 Proof.  Goal is to show that ∑i = ∏i       ∑i = ∑i+1 . 

 

 Let L be a language in ∑i+1 . Then there’s a polynomial 
function q(.) and a poly-time TM M s.t. 
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    s.t.   M(x, u1, …, ui+1) = 1. 

 

 Also, x ∈ L      ∃v’1∀v2 … Qivi
  s.t.  N(x, v’1…, vi) = 1.  

 



PH collapse theorems 

 Theorem. If ∑i = ∏i then PH = ∑i . 

 Proof.  Goal is to show that ∑i = ∏i       ∑i = ∑i+1 . 

 

 Let L be a language in ∑i+1 . Then there’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L       ∃u1∀u2 … Qi+1ui+1
    s.t.   M(x, u1, …, ui+1) = 1. 

 

 Hence, L is a language in ∑i .  



Complete problems in PH ? 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PH ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is PH-hard if for every L in 
PH, L ≤pL’.  Further, if L’ is in PH then L’ is PH-complete. 



Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 



Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 

 Observation.  If PH has a complete problem then PH  
collapses. 

 Proof. If L is PH-complete then L is in ∑i for some i. 
Now use the above fact to infer that PH = ∑i . 



Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 

 Corollary.  PH ⊊ PSPACE unless PH collapses. 
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PH 

NP co-NP 
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Complete problems in ∑i  

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = ∑i  ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is ∑i -hard if for every L in ∑i , 
L ≤p L’.  Further, if L’ is in ∑i  then L’ is ∑i -complete. 



Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  (∑1-SAT is just SAT) 



Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Easy to see that ∑i-SAT is in ∑i . 

    x = ∃v1∀v2 … Qivi
  ϕ(v1, …, vi)

  ∈  ∑i-SAT         

          ∃u1∀u2 … Qiui
    s.t.   M(x, u1, …, ui) = 1, 

   where M outputs ϕ(u1, …, ui).
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with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Let L be a language in ∑i . Then there’s a 
polynomial function q(.) and a poly-time TM M s.t. 

        x ∈ L       ∃u1∀u2 … Qiui
    s.t.   M(x, u1, …, ui) = 1. 
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 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Let L be a language in ∑i . Then there’s a 
polynomial function q(.) and a poly-time TM M s.t. 

        x ∈ L       ∃u1∀u2 … Qiui
    s.t.  ϕ(x, u1, …, ui) = 1. 

 
Boolean circuit 
  (by Cook-Levin) 



Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Let L be a language in ∑i . Then there’s a 
polynomial function q(.) and a poly-time TM M s.t. 

        x ∈ L       ∃u1∀u2 … Qiui
   ϕ(x, u1, …, ui) is true . 

 



Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Let L be a language in ∑i . Then there’s a 
polynomial function q(.) and a poly-time TM M s.t. 

        x ∈ L       ∃u1∀u2 … Qiui
   ϕ(x, u1, …, ui) is true . 

 

 Issue:  ϕ needn’t be a formula. 



Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Let L be a language in ∑i . Then there’s a 
polynomial function q(.) and a poly-time TM M s.t. 

        x ∈ L       ∃u1∀u2 … Qiui
   ϕ(x, u1, …, ui) is true . 

 

 Observation. From the proof of the Cook-Levin 
theorem, we can assume that ϕ is a CNF (if i is odd) 
or a DNF (if i is even).   (Homework) 



Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  

 Proof. Let L be a language in ∑i . Then there’s a 
polynomial function q(.) and a poly-time TM M s.t. 

        x ∈ L       ∃u1∀u2 … Qiui
   ϕ(x, u1, …, ui) ∈ ∑i-SAT . 

 



Other complete problems in ∑2  

 Ref. “Completeness in the Polynomial-Time Hierarchy:  A 
Compendium” by Schaefer and Umans (2008). 

 

 Theorem.  Eq-DNF and Succinct-SetCover are  

                   ∑2 -complete.  


