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An algorithm for every input length?

 “One might imagine that P # NP, but SAT is tractable in
the following sense: for every ¢/ there is a very short
program that runs in time /7 and correctly treats all
instances of size /7 — Karp and Lipton (1982).



An algorithm for every input length?

 “One might imagine that P # NP, but SAT is tractable in
the following sense: for every ¢/ there is a very short
program that runs in time /7 and correctly treats all
instances of size /7 — Karp and Lipton (1982).

e P # NP rules out the existence of a single efficient
algorithm for SAT that handles all input lengths. But, it
doesn’t rule out the possibility of having a sequence of
efficient SAT algorithms — one for each input length.




Lesson learnt from Cook-Levin

e Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

* On the other hand, a circuit on inputs of length n and

of size S can be viewed as an algorithm working on
length n inputs and running in time S.



Lesson learnt from Cook-Levin

e Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

* On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

* To rule the existence of a sequence of algorithms —
one for each input length — we need to rule out the
existence of a sequence of (i.e., a family of) circuits.




Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.
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 Typically, we’'ll consider circuits with one output gate,
and with nodes having in-degree at most two.
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Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

* Size corresponds to ‘“‘sequential time complexity”.
Depth corresponds to “parallel time complexity”.




Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

e If every node in a circuit has out-degree at most one,
then the circuit is called a formula.




A circuit for Parity

e PARITY (X, X, ...

X)) = X DX D ... DX,

X; D x; = (XA7X) V (XA X,)

NG

Size(9) = |¢] = 8
Depth() = 3



Circuit family

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C. },en such that C_has n inputs and |C | = T(n).
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Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C.}.en such that C_has n inputs and |C_| = T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a

T(n)-size circuit family {C_} -\, such that

@ &= C (x) = |, wheren = D

e Defintion: Class P/poly = U SIZE(n).

Alternatively, we say
C,, computes the
characteristic
function of LN{0, | }".



Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*%)-size circuit family {C } .\, such that

xeL e»C (x)=1, wheren = |x]|.
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Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*%)-size circuit family {C } .\, such that

xeL e»C (x)=1, wheren = |x]|.
( C,, is poly(n)-time computable from [".)

 Is P = P/poly? No! P/poly contains undecidable
languages.



Class P/poly

e Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

o Notation. #(M,y) = number corresponding to the
binary string (M,y).

e Let UHALT = {I#™M) : (M,y) € HALT}.Then, UHALT
is also an undecidable language.




Class P/poly

e Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

o Notation. #(M,y) = number corresponding to the
binary string (M,y).

e Let UHALT = {I#™M) : (M,y) € HALT}.Then, UHALT
is also an undecidable language.

e Obs. Any unary language is in P/poly. ( )
Hence, P & P/poly .
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* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©(). We don’t require that
C,.is poly-time computable from |".
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e P is a uniform class as a language in this class has one
algorithm for all inputs.
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family {C_}, where |C_| = n©®(). We don’t require that
C,, is poly-time computable from I".

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class as a language in this class has one

algorithm for all inputsl  Hardware Software




Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©®(). We don’t require that
C,, is poly-time computable from I".

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT € P/poly? In other words, is NP & P/poly?




Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. We’ll show that NP & P/poly implies [], =) 5.
It’s sufficient to show that [], € ),.
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* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L vy, € {0,1}9x) Ju, € {0,1}9x) M(x,u,,u,) = 1.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}9x) Ju, € {0,1}9x) M(x,u,,u,) = 1.

e Goal. Come up with a polynomial function p(.) and a
poly-time TM N s.t.

x € L «m3v, € {0, vy, € {0,1}P1x) N(x,v,v,) = I.
* Think about designing suchaTM N.
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Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L vy, € {0,1}90x) Ju, € {0, 1}3x) ¢(x,u |,/u:) = 1.

 If M runs in time T(n) = n®" on (x,u,, u,), where |x|
= n, then || = O(T(n)?). Let m = #(bits to write d).
* N can compute ¢ from M in poly(|x|) time.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L vy, € {0,1}90x) Ju, € {0, 1}3x) ¢(x,u |,/u:) = 1.

 If M runs in time T(n) = n®" on (x,u,, u,), where |x|
= n, then |¢p| = O(T(n)?). Let m = length of ¢ .
* N can compute ¢ from M in poly(|x|) time.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M

S.t.
x € L vy, € {0,130 @q('x') P(x,u,, UD

®(x,u,, u,) as a function of u, is
satisfiable.Wlog ¢ is a CNF (why?).




Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e By assumption, SAT € P/poly, i.e., there’s a circuit C_
of size p(m) = m©() that correctly decides satifiability
of all input circuits ¢ of length m.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e First attempt. A ) , statement to capture membership
of strings in L.

x €L «=3C_e {0,1}PM vu, € {0,1}9x) C_(d(x,u,, u,))=1.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e First attempt. A ) , statement to capture membership
of strings in L.

x €L «=3C_e {0,1}PM vu, € {0,1}9x) C_(d(x,u,, u,))=1.

* Wrong! Think about a C_ that always outputs |.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e First attempt. A ) , statement to capture membership
of strings in L.

x €L «=3C_e {0,1}PM vu, € {0,1}9x) C_(d(x,u,, u,))=1.

e Need to be sure that C_ is the right circuit.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

o If there’s a circuit C_ of size m®() that correctly
decides satifiability of all input circuits ¢ of length m,
then by self-reducibility of SAT, there’s a multi-output
circuit D_ of size r(m) = m©®l) that outputs a
satisfying assignment for input ¢ if ¢ € SAT. (Homework)




Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.
* A ), statement to capture membership in L.
XEL =
3D_€ {0,1}™ vu, € {0,1}90x) ¢(x,u,, I?m((l)(x,u', uz)l) = .
I

assignment to the u, variables




Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

* A ), statement to capture membership in L.
XEL =
3D,_.€ {0,1}™ vu, € {0, I}alx) (I\)(x,u,, D_(d(x,u,,u,)) = 1.

!
Can be checked by a poly-time TM N.

/




Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x €L vy, € {0,1}90) ¢(x,u,u,) € SAT.

* A ), statement to capture membership in L.
XEL =
3D, € {0,1}™wvu, € {0,1}90x) N(x,D_,u,) = I.



Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* If we can show NP & P/poly assuming P # NP , then
NP ¢ P/poly & P # NP.

o Karp-Lipton theorem shows NP & P/poly assuming
the stronger statement PH # 5,
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* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Follows from a counting argument.
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* Proof. Let s = 2"/(22n). A circuit of size s has at most
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* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* Number of bits required to write the adjacency lists
it at most s(logs + 3) + 4(s + n) < 9s.log s .
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* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

o Number of circuits of size s is at most 3s.27slogs |
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* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

e Number of circuits of size s is at most 2!!slogs



Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* Number of circuits of size s is at most exp(2™').

* Number of functions in n variables is exp(2").



Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* So, circuits of size s can compute at most exp(-2"')
fraction of all Boolean functions on n variables.
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* Is one out of so many functions outside P/poly in
NP?



Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides LM{0,1}" requires 5n — o(n) many A and
V gates.



Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides LM{0,1}" requires 5n — o(n) many A and
V gates. t

Results of this kind are known as
circuit lower bound.



Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

o Prove that NEXP ¢ P/poly .



Lower bounds for restricted circuits

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.
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e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
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e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e PARITY(x,, %x,, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).



Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

° (Khrapchenko ~ 1971)  Any  formula
computing PARITY(x,, x5, ..., x_) has size Q(n?).



Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e (Andreev 1987, Hastad [1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size Q(n3°(!).

Shrinkage of formulas under random restrictions (Subbotovskaya 1961).



Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

° There’s a f that can be computed by a
O(n)-size circuit such that any formula computing f
has size n®() .

An interesting approach was given by
Karchmer, Raz & Wigderson (1995) .



LB for AC® and monotone circuits

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 We’'ll discuss the lower bound for constant depth
circuits in the next lecture.




Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ = | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

o Theorem.There’sa constantd = | s.t.if T: N—=N &
T,:N =N and T (n) =d'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T,(n)) & SIZE(T,(n)).



Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ = | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

o Theorem.There’sa constantd = | s.t.if T: N—=N &
T,:N =N and T (n) =d'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T (n)) & SIZE(T,(n)).

* Proof. Uses Shanon’s result and a counting argument.

(Homework)



