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An algorithm for every input length? 

 “One might imagine that P ≠ NP, but SAT is tractable in 
the following sense: for every 𝓁 there is a very short 
program that runs in time 𝓁 

2 and correctly treats all 
instances of size 𝓁.”   ---   Karp and Lipton (1982).  

 

 



An algorithm for every input length? 

 “One might imagine that P ≠ NP, but SAT is tractable in 
the following sense: for every 𝓁 there is a very short 
program that runs in time 𝓁 

2 and correctly treats all 
instances of size 𝓁.”   ---   Karp and Lipton (1982).  

 

 

 P ≠ NP rules out the existence of a single efficient 
algorithm for SAT that handles all input lengths. But, it 
doesn’t rule out the possibility of having a sequence of 
efficient SAT algorithms – one for each input length.  



Lesson learnt from Cook-Levin 

 Locality of computation implies that an algorithm A 
working on inputs of some fixed length n and running 
in time T(n) can be viewed as a Boolean circuit ϕ of 
size O(T(n)2) s.t.   A(x) = ϕ(x) for every x ∈ {0,1}n . 

 On the other hand, a circuit on inputs of length n and 
of size S can be viewed as an algorithm working on 
length n inputs and running in time S.  



Lesson learnt from Cook-Levin 

 Locality of computation implies that an algorithm A 
working on inputs of some fixed length n and running 
in time T(n) can be viewed as a Boolean circuit ϕ of 
size O(T(n)2) s.t.   A(x) = ϕ(x) for every x ∈ {0,1}n . 

 On the other hand, a circuit on inputs of length n and 
of size S can be viewed as an algorithm working on 
length n inputs and running in time S.  

 

 To rule the existence of a sequence of algorithms – 
one for each input length – we need to rule out the 
existence of a sequence of (i.e., a family of) circuits.     



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  
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 Typically, we’ll consider circuits with one output gate, 
and with nodes having in-degree at most two. 
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Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size corresponds to “sequential time complexity”. 
Depth corresponds to “parallel time complexity”. 



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 If every node in a circuit has out-degree at most one, 
then the circuit is called a formula. 



A circuit for Parity 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

∨ 

∧ ∧ 

¬ ¬ 

x1 x2 

x1 ⊕ x2  =  (x1∧¬x2) ∨ (¬x1∧ x2) 

Size(ϕ) = |ϕ| = 8 
Depth(ϕ) = 3 

ϕ 



Circuit family 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 
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The circuit family 
{Cn}n∈  decides L, i.e., 
Cn decides L∩{0,1}n. 
 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 

Alternatively, we say 
Cn computes the 
characteristic 
function of L∩{0,1}n. 
 



Class P/poly 

 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 
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Class P/poly 

 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

   (Note:  Cn is poly(n)-time computable from 1n.) 

 

 Is P = P/poly? No! P/poly contains undecidable 
languages. 

 



Class P/poly 

 Let HALT = {(M,y) : M halts on input y}. HALT is an 
undecidable language.  

 Notation.  #(M,y) = number corresponding to the 
binary string (M,y).  

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 



Class P/poly 

 Let HALT = {(M,y) : M halts on input y}. HALT is an 
undecidable language.  

 Notation.  #(M,y) = number corresponding to the 
binary string (M,y).  

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 

 Obs.  Any unary language is in P/poly.  (Homework) 

   Hence, P ⊊ P/poly . 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 
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Cn is poly-time computable from 1n. 
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is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. Hardware Software 

Algo/Enc. of TM 

An algo per i/p length 

TM (uniform) 

Circuits (non-uniform) 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly? 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. We’ll show that NP ⊊ P/poly implies ∏2 = ∑2 . 
It’s sufficient to show that ∏2 ⊆ ∑2 . 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  M(x,u1, u2) = 1. 
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 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  M(x,u1, u2) = 1. 

 Goal. Come up with a polynomial function p(.) and a 
poly-time TM N s.t. 

   x ∈ L       ∃v1 ∈ {0,1}p(|x|) ∀v2 ∈ {0,1}p(|x|)  N(x,v1, v2) = 1. 

 Think about designing such a TM N. 
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 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x| 
= n, then |ϕ| = O(T(n)2). Let m = #(bits to write ϕ). 

 N can compute ϕ from M in poly(|x|) time. 
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Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 
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and a poly-time TM M s.t. 
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 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x| 
= n, then |ϕ| = O(T(n)2). Let m = length of ϕ . 

 N can compute ϕ from M in poly(|x|) time. 
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Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 

 

 

 

ϕ(x,u1, u2) as a function of u2 is 
satisfiable. Wlog ϕ is a CNF (why?). 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 By assumption, SAT ∈ P/poly, i.e., there’s a circuit Cm 
of size p(m) = mO(1) that correctly decides satifiability 
of all input circuits ϕ of length m.   
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Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 First attempt. A ∑2 statement to capture membership 
of strings in L. 

   x ∈ L      ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1. 

 

 Wrong!  Think about a Cm that always outputs 1. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 First attempt. A ∑2 statement to capture membership 
of strings in L. 

   x ∈ L      ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1. 

 

 Need to be sure that Cm is the right circuit. 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 If there’s a circuit Cm of size mO(1) that correctly 
decides satifiability of all input circuits ϕ of length m, 
then by self-reducibility of SAT, there’s a multi-output 
circuit Dm of size r(m) = mO(1) that outputs a 
satisfying assignment for input ϕ if ϕ ∈ SAT.  (Homework) 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1. 

 

 
assignment to the u2 variables 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 
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Can be checked by a poly-time TM N. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  N(x, Dm, u1) = 1. 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 

 If we can show NP ⊄ P/poly assuming P ≠ NP , then 

            NP ⊄ P/poly            P ≠ NP . 

 

 Karp-Lipton theorem shows NP ⊄ P/poly assuming 
the stronger statement PH ≠ ∑2 . 
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 Are there Boolean functions (i.e., languages) outside 
P/poly?   

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Follows from a counting argument. 
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 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of bits required to write the adjacency lists 
it at most s(log s + 3) + 4(s + n) ≤ 9s.log s . 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of circuits of size s is at most 3s.29s.log s . 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of circuits of size s is at most 211s.log s . 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 Number of circuits of size s is at most exp(2n-1). 

 Number of functions in n variables is exp(2n). 

 

 

 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Proof. Let s = 2n/(22n). A circuit of size s has at most 
s internal nodes. It can be specified by giving the 
labels of the internal nodes and the adjacency lists.  

 So, circuits of size s can compute at most exp(-2n-1) 
fraction of all Boolean functions on n variables. 
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 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 

Results of this kind are known as 
circuit lower bound. 



Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many.  

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 

 Open problem. Prove that NEXP ⊄ P/poly . 



Lower bounds for restricted circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 



Lower bounds for restricted circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

                                           Homework 



Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Khrapchenko 1971) Any formula 
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).  

                                            



Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Andreev 1987, Hastad 1998) There’s a f 
that can be computed by a O(n)-size circuit such that 
any formula computing f has size 𝛀(n3-o(1)).  

                                            Technique:  Shrinkage of formulas under random restrictions (Subbotovskaya 1961).  



Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Conjecture. There’s a f that can be computed by a 
O(n)-size circuit such that any formula computing f 
has size nω(1) .  

                                            An interesting approach was given by 
Karchmer, Raz & Wigderson (1995) . 



LB for AC0 and monotone circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 We’ll discuss the lower bound for constant depth 
circuits in the next lecture.  

                                            



Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 



Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 Proof. Uses Shanon’s result and a counting argument. 

                                     (Homework) 

 


