Computational Complexity Theory

Lecture 15: Boolean circuits; Karp-Lipton theorem

Department of Computer Science, Indian Institute of Science

An algorithm for every input length?

 "One might imagine that P ≠ NP, but SAT is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ² and correctly treats all instances of size ℓ." — Karp and Lipton (1982).

An algorithm for every input length?

 "One might imagine that P ≠ NP, but SAT is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ² and correctly treats all instances of size ℓ." --- Karp and Lipton (1982).

 P ≠ NP rules out the existence of a single efficient algorithm for SAT that handles all input lengths. But, it doesn't rule out the possibility of having a sequence of efficient SAT algorithms – one for each input length.

Lesson learnt from Cook-Levin

- Locality of computation implies that an algorithm A working on inputs of some fixed length n and running in time T(n) can be viewed as a Boolean circuit ϕ of size O(T(n)²) s.t. A(x) = $\phi(x)$ for every $x \in \{0,1\}^n$.
- On the other hand, a circuit on inputs of length n and of size S can be viewed as an algorithm working on length n inputs and running in time S.

Lesson learnt from Cook-Levin

- Locality of computation implies that an algorithm A working on inputs of some fixed length n and running in time T(n) can be viewed as a Boolean circuit ϕ of size O(T(n)²) s.t. A(x) = $\phi(x)$ for every $x \in \{0,1\}^n$.
- On the other hand, a circuit on inputs of length n and of size S can be viewed as an algorithm working on length n inputs and running in time S.
- To rule the existence of a sequence of algorithms one for each input length – we need to rule out the existence of a sequence of <u>(i.e., a family of) circuits</u>.

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

• Typically, we'll consider circuits with one output gate, and with nodes having in-degree at most two.

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

 <u>Size</u> of circuit is the no. of edges in it. <u>Depth</u> is the length of the longest path from an i/p to o/p node.

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

θ(no. of nodes)

 <u>Size</u> of circuit is the <u>no. of edges</u> in it. <u>Depth</u> is the length of the longest path from an i/p to o/p node.

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

<u>Size</u> corresponds to "sequential time complexity".
 <u>Depth</u> corresponds to "parallel time complexity".

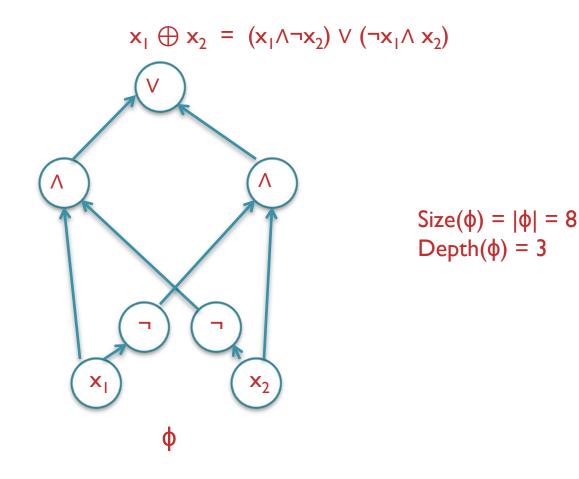
- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

 If every node in a circuit has out-degree at most one, then the circuit is called a <u>formula</u>.

A circuit for Parity

• PARITY $(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.



Circuit family

- Let T: $N \rightarrow N$ be some function.
- Definition: A T(n)-size circuit family is a set of circuits $\{C_n\}_{n \in \mathbb{N}}$ such that C_n has n inputs and $|C_n| \leq T(n)$.

- Let T: $N \rightarrow N$ be some function.
- Definition: A T(n)-size circuit family is a set of circuits $\{C_n\}_{n \in \mathbb{N}}$ such that C_n has n inputs and $|C_n| \leq T(n)$.
- Definition: A language L is in SIZE(T(n)) if there's a T(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that $x \in L \iff C_n(x) = I$, where n = |x|.
- Definition: Class $P/poly = \bigcup_{c \ge 1} SIZE(n^c)$.

- Let T: $N \rightarrow N$ be some function.
- Definition: A T(n)-size circuit family is a set of circuits $\{C_n\}_{n \in \mathbb{N}}$ such that C_n has n inputs and $|C_n| \leq T(n)$.
- Definition: A language L is in SIZE(T(n)) if there's a T(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that

$$x \in L \iff C_n(x) = I$$
, where $n = |x|$.

• Definition: Class $P/poly = \bigcup_{c \ge 1} SIZE(n^c)$.

The circuit family $\{C_n\}_{n \in \mathbb{N}} \frac{decides}{L}$, i.e., C_n decides $L \cap \{0, 1\}^n$.

- Let T: $N \rightarrow N$ be some function.
- Definition: A T(n)-size circuit family is a set of circuits $\{C_n\}_{n \in \mathbb{N}}$ such that C_n has n inputs and $|C_n| \leq T(n)$.
- Definition: A language L is in SIZE(T(n)) if there's a T(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that

$$x \in L \iff C_n(x) = I$$
, where $n = |x|$.

• Definition: Class $P/poly = \bigcup_{c \ge 1} SIZE(n^c)$.

Alternatively, we say C_n computes the characteristic function of L $(0,1)^n$.

- Observation: $P \subseteq P/poly$.
- Proof. If $L \in P$, then there's a n^c-time TM that decides L for some constant c. By Cook-Levin, there's a $O(n^{2c})$ -size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that

 $x \in L \iff C_n(x) = I$, where n = |x|.

- Observation: $P \subseteq P/poly$.
- Proof. If $L \in P$, then there's a n^c-time TM that decides L for some constant c. By Cook-Levin, there's a $O(n^{2c})$ -size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that

 $x \in L \iff C_n(x) = I$, where n = |x|.

(Note: C_n is poly(n)-time computable from I^n .)

Is P = P/poly?

- Observation: $P \subseteq P/poly$.
- Proof. If L ∈ P, then there's a n^c-time TM that decides L for some constant c. By Cook-Levin, there's a O(n^{2c})-size circuit family {C_n}_{n∈N} such that x ∈ L ⇔C_n(x) = I, where n = |x|.

(Note: C_n is poly(n)-time computable from I^n .)

 Is P = P/poly? No! P/poly contains undecidable languages.

- Let HALT = {(M,y) : M halts on input y}. HALT is an undecidable language.
- Notation. #(M,y) = number corresponding to the binary string (M,y).
- Let UHALT = {I^{#(M,y)} : (M,y) ∈ HALT}.Then, UHALT is also an undecidable language.

- Let HALT = {(M,y) : M halts on input y}. HALT is an undecidable language.
- Notation. #(M,y) = number corresponding to the binary string (M,y).
- Let UHALT = {I^{#(M,y)} : (M,y) ∈ HALT}.Then, UHALT is also an undecidable language.
- Obs. Any unary language is in P/poly. (Homework)
 Hence, P ⊊ P/poly.

• What makes P/poly contain undecidable languages? Ans: $L \in P$ /poly implies that L is decided by a circuit family $\{C_n\}$, where $|C_n| = n^{O(1)}$. We don't require that $\underline{C_n}$ is poly-time computable from $\underline{I^n}$.

- What makes P/poly contain undecidable languages? Ans: $L \in P$ /poly implies that L is decided by a circuit family $\{C_n\}$, where $|C_n| = n^{O(1)}$. We don't require that C_n is poly-time computable from I^n .
- P/poly is a <u>non-uniform class</u> as a language in this class is allowed to have different algorithms/circuits for different input lengths.
- P is a <u>uniform class</u> as a language in this class has one algorithm for all inputs.

- What makes P/poly contain undecidable languages? Ans: $L \in P$ /poly implies that L is decided by a circuit family {C_n}, where $|C_n| = n^{O(1)}$. We don't require that C_n is poly-time computable from Iⁿ.
- P/poly is a <u>non-uniform class</u> as a language in this class is allowed to have different algorithms/circuits for different input lengths.
- P is a <u>uniform class</u> as a language in this class has one algorithm for all inputs. Hardware Software

5	, Hardware	Software
	TM (uniform)	Algo/Enc. of TM
	Circuits (non-uniform)	An algo per i/p length

- What makes P/poly contain undecidable languages? Ans: $L \in P$ /poly implies that L is decided by a circuit family $\{C_n\}$, where $|C_n| = n^{O(1)}$. We don't require that C_n is poly-time computable from I^n .
- P/poly is a <u>non-uniform class</u> as a language in this class is allowed to have different algorithms/circuits for different input lengths.
- P is a <u>uniform class</u> as a language in this class has one algorithm for all inputs.
- Is SAT \in P/poly? In other words, is NP \subseteq P/poly?

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. We'll show that NP \subseteq P/poly implies $\prod_2 = \sum_2$. It's sufficient to show that $\prod_2 \subseteq \sum_2$.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \exists u_2 \in \{0, I\}^{q(|x|)} M(x, u_1, u_2) = I.$

- Theorem (*Karp* & *Lipton* 1982). If NP \subseteq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \exists u_2 \in \{0, I\}^{q(|x|)} M(x, u_1, u_2) = I.$

Goal. Come up with a polynomial function p(.) and a poly-time TM N s.t.

 $x \in L \iff \exists v_1 \in \{0, I\}^{p(|x|)} \forall v_2 \in \{0, I\}^{p(|x|)} N(x, v_1, v_2) = I.$

• Think about designing such a TM N.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.)and a poly-time TM M s.t. by Cook-Levin

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \exists u_2 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) = I.$

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.)and a poly-time TM M s.t. by Cook-Levin

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \exists u_2 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) = I.$

- If M runs in time $T(n) = n^{O(1)}$ on (x,u_1, u_2) , where |x| = n, then $|\phi| = O(T(n)^2)$. Let $m = #(bits to write <math>\phi)$.
- N can compute \$\oplus\$ from M in poly(|x|) time.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.)and a poly-time TM M s.t. by Cook-Levin

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \exists u_2 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) = I.$

- If M runs in time $T(n) = n^{O(1)}$ on (x,u_1, u_2) , where |x| = n, then $|\phi| = O(T(n)^2)$. Let m = length of ϕ .
- N can compute ϕ from M in poly(|x|) time.

- Theorem (*Karp* & *Lipton* 1982). If NP \subseteq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \notin u_2 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) = I.$

 $\phi(x,u_1,u_2)$ as a function of u_2 is satisfiable. Wlog ϕ is a CNF (why?).

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) \in SAT.$

By assumption, SAT ∈ P/poly, i.e., there's a circuit C_m of size p(m) = m^{O(1)} that correctly decides satifiability of all input circuits ¢ of length m.

- Theorem (*Karp* & *Lipton* 1982). If NP \subseteq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) \in SAT.$

• First attempt. A \sum_{2} statement to capture membership of strings in L.

 $\mathbf{x} \in \mathbf{L} \iff \mathbf{C}_{\mathbf{m}} \in \{\mathbf{0},\mathbf{I}\}^{\mathbf{p}(\mathbf{m})} \forall \mathbf{u}_{\mathbf{I}} \in \{\mathbf{0},\mathbf{I}\}^{\mathbf{q}(|\mathbf{x}|)} \mathbf{C}_{\mathbf{m}}(\boldsymbol{\varphi}(\mathbf{x},\mathbf{u}_{\mathbf{I}},\mathbf{u}_{2})) = \mathbf{I}.$

- Theorem (*Karp* & *Lipton* 1982). If NP \subseteq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) \in SAT.$

• First attempt. A \sum_{2} statement to capture membership of strings in L.

 $\mathbf{x} \in \mathbf{L} \iff \mathbf{C}_{\mathbf{m}} \in \{\mathbf{0},\mathbf{I}\}^{\mathbf{p}(\mathbf{m})} \forall \mathbf{u}_{\mathbf{I}} \in \{\mathbf{0},\mathbf{I}\}^{\mathbf{q}(|\mathbf{x}|)} \mathbf{C}_{\mathbf{m}}(\boldsymbol{\varphi}(\mathbf{x},\mathbf{u}_{\mathbf{I}},\mathbf{u}_{2})) = \mathbf{I}.$

• Wrong! Think about a C_m that always outputs 1.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) \in SAT.$

• First attempt. A \sum_{2} statement to capture membership of strings in L.

 $\mathbf{x} \in \mathbf{L} \iff \mathbf{C}_{\mathbf{m}} \in \{\mathbf{0},\mathbf{I}\}^{\mathbf{p}(\mathbf{m})} \forall \mathbf{u}_{\mathbf{I}} \in \{\mathbf{0},\mathbf{I}\}^{\mathbf{q}(|\mathbf{x}|)} \mathbf{C}_{\mathbf{m}}(\boldsymbol{\varphi}(\mathbf{x},\mathbf{u}_{\mathbf{I}},\mathbf{u}_{2})) = \mathbf{I}.$

• Need to be sure that C_m is the right circuit.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $\mathbf{x} \in \mathbf{L} \iff \forall \mathbf{u}_1 \in \{\mathbf{0}, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \mathbf{\varphi}(\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2) \in \mathsf{SAT}.$

• If there's a circuit C_m of size $m^{O(1)}$ that correctly decides satifiability of all input circuits ϕ of length m, then <u>by self-reducibility of SAT</u>, there's a <u>multi-output</u> circuit D_m of size $r(m) = m^{O(1)}$ that <u>outputs a</u> <u>satisfying assignment</u> for input ϕ if $\phi \in SAT$. (Homework)

- Theorem (*Karp* & *Lipton* 1982). If NP \subseteq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $x \in L \iff \forall u_1 \in \{0, I\}^{q(|x|)} \phi(x, u_1, u_2) \in SAT.$

A ∑₂ statement to capture membership in L.
 x ∈ L ⇔

 $\exists D_{m} \in \{0, I\}^{r(m)} \forall u_{1} \in \{0, I\}^{q(|x|)} \varphi(x, u_{1}, D_{m}(\varphi(x, u_{1}, u_{2})) = I.$

assignment to the u_2 variables

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $\mathbf{x} \in \mathbf{L} \iff \forall \mathbf{u}_1 \in \{0, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \phi(\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2) \in SAT.$

A ∑₂ statement to capture membership in L.
 x ∈ L ⇔

 $\exists D_{m} \in \{0, I\}^{r(m)} \forall u_{1} \in \{0, I\}^{q(|x|)} \varphi(x, u_{1}, D_{m}(\varphi(x, u_{1}, u_{2})) = I.$

Can be checked by a poly-time TM N.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_{2} .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

 $\mathbf{x} \in \mathbf{L} \iff \forall \mathbf{u}_1 \in \{0, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \phi(\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2) \in SAT.$

A ∑₂ statement to capture membership in L.
 x ∈ L

 $\exists D_{m} \in \{0, I\}^{r(m)} \forall u_{1} \in \{0, I\}^{q(|x|)} \ N(x, D_{m}, u_{1}) = I.$

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- If we can show NP ⊄ P/poly assuming P ≠ NP, then
 NP ⊄ P/poly ⇔ P ≠ NP.
- Karp-Lipton theorem shows NP ⊄ P/poly assuming the stronger statement PH ≠ ∑₂.

 Are there Boolean functions (i.e., languages) outside P/poly?

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Follows from a counting argument.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Let s = 2ⁿ/(22n). A circuit of size s has at most
 s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Let s = 2ⁿ/(22n). A circuit of size s has at most
 s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of bits required to write the adjacency lists it at most $s(\log s + 3) + 4(s + n) \le 9s \log s$.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Let s = 2ⁿ/(22n). A circuit of size s has at most
 s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of circuits of size s is at most 3^s.2^{9s.log s}.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Let s = 2ⁿ/(22n). A circuit of size s has at most
 s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of circuits of size s is at most 2^{11s.log s}.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Let s = 2ⁿ/(22n). A circuit of size s has at most
 s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of circuits of size s is at most $exp(2^{n-1})$.
- Number of functions in n variables is $exp(2^n)$.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Let s = 2ⁿ/(22n). A circuit of size s has at most
 s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- So, circuits of size s can compute at most exp(-2ⁿ⁻¹) fraction of all Boolean functions on n variables.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP?

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n - o(n) many Λ and V gates.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n - o(n) many \land and \lor gates.

Results of this kind are known as circuit lower bound.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Open problem. Prove that NEXP ⊄ P/poly .

Lower bounds for restricted circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.

Lower bounds for restricted circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Fact. $PARITY(x_1, x_2, ..., x_n)$ can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.

Homework

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Theorem. (*Khrapchenko* 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Theorem. (Andreev 1987, Hastad 1998) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $\Omega(n^{3-o(1)})$.

Technique: Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Conjecture. There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $n^{\omega(1)}$.

An interesting approach was given by Karchmer, Raz & Wigderson (1995).

LB for AC⁰ and monotone circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- We'll discuss the lower bound for <u>constant depth</u> <u>circuits</u> in the next lecture.

Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge I$ s.t. if $T_1: N \rightarrow N \& T_2: N \rightarrow N$ and $T_1(n) \le d^{-1} \cdot T_2(n) \le T_2(n) \le c \cdot (2^n/n)$ then SIZE $(T_1(n)) \subseteq SIZE(T_2(n))$.

Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge I$ s.t. if $T_1: N \rightarrow N \& T_2: N \rightarrow N$ and $T_1(n) \le d^{-1} \cdot T_2(n) \le T_2(n) \le c \cdot (2^n/n)$ then SIZE $(T_1(n)) \subseteq SIZE(T_2(n)).$
- Proof. Uses Shanon's result and a counting argument. (Homework)