
Computational Complexity Theory

 Lecture 15: Boolean circuits;

 Karp-Lipton theorem

Department of Computer Science,
Indian Institute of Science

An algorithm for every input length?

 “One might imagine that P ≠ NP, but SAT is tractable in
the following sense: for every 𝓁 there is a very short
program that runs in time 𝓁

2 and correctly treats all
instances of size 𝓁.” --- Karp and Lipton (1982).

An algorithm for every input length?

 “One might imagine that P ≠ NP, but SAT is tractable in
the following sense: for every 𝓁 there is a very short
program that runs in time 𝓁

2 and correctly treats all
instances of size 𝓁.” --- Karp and Lipton (1982).

 P ≠ NP rules out the existence of a single efficient
algorithm for SAT that handles all input lengths. But, it
doesn’t rule out the possibility of having a sequence of
efficient SAT algorithms – one for each input length.

Lesson learnt from Cook-Levin

 Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ϕ of
size O(T(n)2) s.t. A(x) = ϕ(x) for every x ∈ {0,1}n .

 On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

Lesson learnt from Cook-Levin

 Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ϕ of
size O(T(n)2) s.t. A(x) = ϕ(x) for every x ∈ {0,1}n .

 On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

 To rule the existence of a sequence of algorithms –
one for each input length – we need to rule out the
existence of a sequence of (i.e., a family of) circuits.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Typically, we’ll consider circuits with one output gate,
and with nodes having in-degree at most two.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

 𝚹(no. of nodes)

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size corresponds to “sequential time complexity”.
Depth corresponds to “parallel time complexity”.

Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 If every node in a circuit has out-degree at most one,
then the circuit is called a formula.

A circuit for Parity

 PARITY(x1, x2, …, xn) = x1 ⊕ x2 ⊕ … ⊕ xn .

∨

∧ ∧

¬ ¬

x1 x2

x1 ⊕ x2 = (x1∧¬x2) ∨ (¬x1∧ x2)

Size(ϕ) = |ϕ| = 8
Depth(ϕ) = 3

ϕ

Circuit family

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

The circuit family
{Cn}n∈ decides L, i.e.,
Cn decides L∩{0,1}n.

Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Alternatively, we say
Cn computes the
characteristic
function of L∩{0,1}n.

Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 (Note: Cn is poly(n)-time computable from 1n.)

 Is P = P/poly?

Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 (Note: Cn is poly(n)-time computable from 1n.)

 Is P = P/poly? No! P/poly contains undecidable
languages.

Class P/poly

 Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

 Notation. #(M,y) = number corresponding to the
binary string (M,y).

 Let UHALT = {1#(M,y) : (M,y) ∈ HALT}. Then, UHALT
is also an undecidable language.

Class P/poly

 Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

 Notation. #(M,y) = number corresponding to the
binary string (M,y).

 Let UHALT = {1#(M,y) : (M,y) ∈ HALT}. Then, UHALT
is also an undecidable language.

 Obs. Any unary language is in P/poly. (Homework)

 Hence, P ⊊ P/poly .

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs.

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs. Hardware Software

Algo/Enc. of TM

An algo per i/p length

TM (uniform)

Circuits (non-uniform)

Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly?

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. We’ll show that NP ⊊ P/poly implies ∏2 = ∑2 .
It’s sufficient to show that ∏2 ⊆ ∑2 .

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) M(x,u1, u2) = 1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) M(x,u1, u2) = 1.

 Goal. Come up with a polynomial function p(.) and a
poly-time TM N s.t.

 x ∈ L ∃v1 ∈ {0,1}p(|x|) ∀v2 ∈ {0,1}p(|x|) N(x,v1, v2) = 1.

 Think about designing such a TM N.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

by Cook-Levin

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x|
= n, then |ϕ| = O(T(n)2). Let m = #(bits to write ϕ).

 N can compute ϕ from M in poly(|x|) time.

by Cook-Levin

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x|
= n, then |ϕ| = O(T(n)2). Let m = length of ϕ .

 N can compute ϕ from M in poly(|x|) time.

by Cook-Levin

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1.

ϕ(x,u1, u2) as a function of u2 is
satisfiable. Wlog ϕ is a CNF (why?).

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 By assumption, SAT ∈ P/poly, i.e., there’s a circuit Cm
of size p(m) = mO(1) that correctly decides satifiability
of all input circuits ϕ of length m.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 First attempt. A ∑2 statement to capture membership
of strings in L.

 x ∈ L ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 First attempt. A ∑2 statement to capture membership
of strings in L.

 x ∈ L ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1.

 Wrong! Think about a Cm that always outputs 1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 First attempt. A ∑2 statement to capture membership
of strings in L.

 x ∈ L ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1.

 Need to be sure that Cm is the right circuit.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 If there’s a circuit Cm of size mO(1) that correctly
decides satifiability of all input circuits ϕ of length m,
then by self-reducibility of SAT, there’s a multi-output
circuit Dm of size r(m) = mO(1) that outputs a
satisfying assignment for input ϕ if ϕ ∈ SAT. (Homework)

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 A ∑2 statement to capture membership in L.

 x ∈ L

 ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1.

assignment to the u2 variables

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 A ∑2 statement to capture membership in L.

 x ∈ L

 ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1.

Can be checked by a poly-time TM N.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.)
and a poly-time TM M s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ϕ(x,u1, u2) ∈ SAT.

 A ∑2 statement to capture membership in L.

 x ∈ L

 ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|) N(x, Dm, u1) = 1.

Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 If we can show NP ⊄ P/poly assuming P ≠ NP , then

 NP ⊄ P/poly P ≠ NP .

 Karp-Lipton theorem shows NP ⊄ P/poly assuming
the stronger statement PH ≠ ∑2 .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly?

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Follows from a counting argument.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of bits required to write the adjacency lists
it at most s(log s + 3) + 4(s + n) ≤ 9s.log s .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of circuits of size s is at most 3s.29s.log s .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of circuits of size s is at most 211s.log s .

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 Number of circuits of size s is at most exp(2n-1).

 Number of functions in n variables is exp(2n).

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Let s = 2n/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

 So, circuits of size s can compute at most exp(-2n-1)
fraction of all Boolean functions on n variables.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP?

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

Results of this kind are known as
circuit lower bound.

Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Open problem. Prove that NEXP ⊄ P/poly .

Lower bounds for restricted circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

Lower bounds for restricted circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Homework

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Khrapchenko 1971) Any formula
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size 𝛀(n3-o(1)).

 Technique: Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Conjecture. There’s a f that can be computed by a
O(n)-size circuit such that any formula computing f
has size nω(1) .

 An interesting approach was given by
Karchmer, Raz & Wigderson (1995) .

LB for AC0 and monotone circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 We’ll discuss the lower bound for constant depth
circuits in the next lecture.

Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

 Proof. Uses Shanon’s result and a counting argument.

 (Homework)

