
Computational Complexity Theory

 Lecture 16: Class AC and NC;

 P-completeness

Department of Computer Science,

Indian Institute of Science

Recap: Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Recap: Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size corresponds to “sequential time complexity”.
Depth corresponds to “parallel time complexity”.

Recap: Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Recap: Class P/poly

 Observation: P ⊆ P/poly .

 Is P = P/poly? No! P/poly contains undecidable
languages.

 Let UHALT = {1#(M,y) : (M,y) ∈ HALT}. Then, UHALT
is also an undecidable language.

 Obs. Any unary language is in P/poly.

 Hence, P ⊊ P/poly .

Recap: Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly?

Recap: Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 If we can show NP ⊄ P/poly assuming P ≠ NP , then

 NP ⊄ P/poly P ≠ NP .

 Karp-Lipton theorem shows NP ⊄ P/poly assuming
the stronger statement PH ≠ ∑2 .

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

Recap: Lower bound for Boolean formulas

Recap: Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Khrapchenko 1971) Any formula
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size 𝛀(n3-o(1)).

Recap: Lower bound for Boolean formulas

Recap: Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Conjecture. (Circuits more powerful than formulas)
There’s a f that can be computed by a O(n)-size
circuit such that any formula computing f has size
nω(1) .

Recap: LB for constant depth circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 We’ll discuss a lower bound for constant depth
circuits in the next lecture.

Recap: Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

Class NCi and ACi

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.
i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 Homework: PARITY is in NC1.

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 NC1 = poly(n)-size Boolean formulas. (Assignment)

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is
implicitly log-space computable from 1n.

Note: Sometimes NCi is defined as
log-space uniform NCi .

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is
implicitly log-space computable from 1n.

log-space uniform NC ⊆ P .

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Model: PRAM (has a central shared memory)

A processor can “deliver” a message to any other
processor in O(log n) time.

A processor has O(log n) bits of memory and
performs a poly-time computation at every step.

 Processor computation steps are synchronized.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Observation. A language L is in NC if and only if L
can be decided efficiently in parallel.

 Proof. Almost immediate from the assumptions on
the parallel computation model.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi. (stands for Alternating Class)
i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0.

i ≥ 0

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. NC = AC.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 In the next lecture, we’ll show that PARITY is not in
AC0, i.e., AC0 ⊊ NC1.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Further, L is in log-space uniform ACi if Cn is
implicitly log-space computable from 1n.

i ≥ 0

log-space uniform AC ⊆ P .

P-completeness

P-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = (uniform) NC? Is P = L?…use log-space
reduction!

 Definition. A language L ∈ P is P-complete if for every
L’ in P , L’ ≤l L.

P-complete problems

 Circuit value problem. Given a circuit and an input,
compute the output of the circuit. (The reduction in the

Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system
of linear inequality constraints over rationals.
(Assignment problem)

 CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

No log-space algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in L P = L.

 Proof. Easy.

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof. direction is straightforward.

 Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P ⊆ NC.

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof.() Let L’ ∈ P. As L is P-complete, L’ ≤l L.

…

NC ckt for
L ∩ {0,1}m

y ∈ {0,1}m

… …

Log-space
 algo

Log-space
 algo

x ∈ {0,1}n x ∈ {0,1}n

…

m = poly(n)

Is x ∈ L’ ?

Size = poly(n)
Depth = poly(log n)

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof.() Let L’ ∈ P. As L is P-complete, L’ ≤l L.

…

NC ckt for
L ∩ {0,1}m

y ∈ {0,1}m

… …

Log-space
 algo

Log-space
 algo

x ∈ {0,1}n x ∈ {0,1}n

…

m = poly(n)

Is x ∈ L’ ?

Size = poly(n)
Depth = poly(log n)

Need to replace
this by a NC ckt.

Parallelization of Log-space

 Do problems in L have efficient parallel algorithms?
Yes!

 Theorem. NL ⊆ (uniform) NC. (Assignment problem)

Parallelization of Log-space

 Do problems in L have efficient parallel algorithms?
Yes!

 Theorem. NL ⊆ (uniform) NC. (Assignment problem)

 Proof sketch.

 1. Construct the adjacency matrix A of the
configuration graph.

 2. Use repeated squaring of A to find out if there’s a
path from start to accept configurations.

Complexity zoo

EXP

PSPACE

PH

L

NL

P

NP co-NP

NC

NEXP

(uniform) NC

