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Recap: Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size of circuit is the no. of edges in it. Depth is the 
length of the longest path from an i/p to o/p node. 



Recap: Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size corresponds to “sequential time complexity”. 
Depth corresponds to “parallel time complexity”. 



Recap: Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 



Recap: Class P/poly 

 Observation:  P ⊆ P/poly . 

 Is P = P/poly? No! P/poly contains undecidable 
languages. 

 

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 

 Obs.  Any unary language is in P/poly.  

 Hence, P ⊊ P/poly . 

 

 



Recap: Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly? 



Recap: Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 

 If we can show NP ⊄ P/poly assuming P ≠ NP , then 

            NP ⊄ P/poly            P ≠ NP . 

 

 Karp-Lipton theorem shows NP ⊄ P/poly assuming 
the stronger statement PH ≠ ∑2 . 

 

 



Recap: Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 

 

 

 

 



Recap: Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 

 

 



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

                                          

Recap: Lower bound for Boolean formulas 



Recap: Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Khrapchenko 1971) Any formula 
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).  

                                            



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Andreev 1987, Hastad 1998) There’s a f 
that can be computed by a O(n)-size circuit such that 
any formula computing f has size 𝛀(n3-o(1)).  

                                            

Recap: Lower bound for Boolean formulas 



Recap: Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Conjecture. (Circuits more powerful than formulas) 
There’s a f that can be computed by a O(n)-size 
circuit such that any formula computing f has size 
nω(1) .                           



Recap: LB for constant depth circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 We’ll discuss a lower bound for constant depth 
circuits in the next lecture. 

                                            



Recap: Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 



Class NCi and ACi 



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 
i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 Homework:  PARITY is in NC1. 

i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 NC1 = poly(n)-size Boolean formulas.   (Assignment) 

i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Further, L is in log-space uniform NCi if Cn is 
implicitly log-space computable from 1n.  

Note:  Sometimes NCi is defined as 
log-space uniform NCi . 



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Further, L is in log-space uniform NCi if Cn is 
implicitly log-space computable from 1n.  

log-space uniform NC ⊆ P . 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 

 Model:  PRAM (has a central shared memory) 

A processor can “deliver” a message to any other 
processor in O(log n) time. 

A processor has O(log n) bits of memory and 
performs a poly-time computation at every step. 

 Processor computation steps are synchronized. 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 

 

 Observation. A language L is in NC if and only if L 
can be decided efficiently in parallel. 

 Proof. Almost immediate from the assumptions on 
the parallel computation model. 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. (stands for Alternating Class) 
i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Observation.  ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0. 

i ≥ 0 

Replace an unbounded fan-in gate by a 
binary tree of bounded fan-in gates. 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Observation.  NC = AC. 

i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 In the next lecture, we’ll show that PARITY is not in 
AC0, i.e.,  AC0 ⊊ NC1. 

i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Further, L is in log-space uniform ACi if Cn is 
implicitly log-space computable from 1n.  

i ≥ 0 

log-space uniform AC ⊆ P . 



P-completeness 



P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = (uniform) NC? Is P = L?…use log-space 
reduction! 

 

 Definition.  A language L ∈ P is P-complete if for every 
L’ in P , L’ ≤l L. 



P-complete problems 

 Circuit value problem. Given a circuit and an input, 
compute the output of the circuit. (The reduction in the 

Cook-Levin theorem can be made a log-space reduction.) 

 

 Linear programming. Check the feasibility of a system 
of linear inequality constraints over rationals. 
(Assignment problem) 

  

 CFG membership. Given a context-free grammar and 
a string, decide if the string can be generated by the 
grammar. 



No log-space algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in L          P = L. 

 Proof.  Easy. 

 

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L. 

 

 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.      direction is straightforward.  

 

 Can’t hope to get an efficient parallel algorithm for a 
P-complete problem unless P ⊆ NC. 

 

 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.(    ) Let L’ ∈ P. As L is P-complete, L’ ≤l L. 

 

 

… 

NC ckt for 
L ∩ {0,1}m 

y ∈ {0,1}m 

… … 

Log-space 
   algo 

Log-space 
   algo 

x ∈ {0,1}n x ∈ {0,1}n 

… 

m = poly(n) 

Is x ∈ L’ ? 

Size = poly(n) 
Depth = poly(log n) 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.(    ) Let L’ ∈ P. As L is P-complete, L’ ≤l L. 

 

 

… 

NC ckt for 
L ∩ {0,1}m 

y ∈ {0,1}m 

… … 

Log-space 
   algo 

Log-space 
   algo 

x ∈ {0,1}n x ∈ {0,1}n 

… 

m = poly(n) 

Is x ∈ L’ ? 

Size = poly(n) 
Depth = poly(log n) 

Need to replace 
this by a NC ckt. 



Parallelization of Log-space 

 Do problems in L have efficient parallel algorithms? 
Yes!  

 

 Theorem.  NL ⊆ (uniform) NC.   (Assignment problem) 

 

 

 



Parallelization of Log-space 

 Do problems in L have efficient parallel algorithms? 
Yes!  

 

 Theorem.  NL ⊆ (uniform) NC.   (Assignment problem) 

 Proof sketch.  

 1. Construct the adjacency matrix A of the 
configuration graph. 

 2. Use repeated squaring of A to find out if there’s a 
path from start to accept configurations. 

 

 

 



Complexity zoo 

EXP 
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PH 

L 

NL 

P 

NP co-NP 

NC 

NEXP 

(uniform) NC 


