
Computational Complexity Theory

 Lecture 16: Class AC and NC;

 P-completeness

Department of Computer Science,

Indian Institute of Science

Recap: Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Recap: Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size corresponds to “sequential time complexity”.
Depth corresponds to “parallel time complexity”.

Recap: Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Recap: Class P/poly

 Observation: P ⊆ P/poly .

 Is P = P/poly? No! P/poly contains undecidable
languages.

 Let UHALT = {1#(M,y) : (M,y) ∈ HALT}. Then, UHALT
is also an undecidable language.

 Obs. Any unary language is in P/poly.

 Hence, P ⊊ P/poly .

Recap: Class P/poly

 What makes P/poly contain undecidable languages?
Ans: L ∈ P/poly implies that L is decided by a circuit
family {Cn}, where |Cn| = nO(1). We don’t require that
Cn is poly-time computable from 1n.

 P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

 P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly?

Recap: Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 If we can show NP ⊄ P/poly assuming P ≠ NP , then

 NP ⊄ P/poly P ≠ NP .

 Karp-Lipton theorem shows NP ⊄ P/poly assuming
the stronger statement PH ≠ ∑2 .

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

Recap: Lower bound for Boolean formulas

Recap: Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Khrapchenko 1971) Any formula
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size 𝛀(n3-o(1)).

Recap: Lower bound for Boolean formulas

Recap: Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Conjecture. (Circuits more powerful than formulas)
There’s a f that can be computed by a O(n)-size
circuit such that any formula computing f has size
nω(1) .

Recap: LB for constant depth circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 We’ll discuss a lower bound for constant depth
circuits in the next lecture.

Recap: Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

Class NCi and ACi

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.
i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 Homework: PARITY is in NC1.

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 NC1 = poly(n)-size Boolean formulas. (Assignment)

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is
implicitly log-space computable from 1n.

Note: Sometimes NCi is defined as
log-space uniform NCi .

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is
implicitly log-space computable from 1n.

log-space uniform NC ⊆ P .

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Model: PRAM (has a central shared memory)

A processor can “deliver” a message to any other
processor in O(log n) time.

A processor has O(log n) bits of memory and
performs a poly-time computation at every step.

 Processor computation steps are synchronized.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Observation. A language L is in NC if and only if L
can be decided efficiently in parallel.

 Proof. Almost immediate from the assumptions on
the parallel computation model.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi. (stands for Alternating Class)
i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0.

i ≥ 0

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. NC = AC.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 In the next lecture, we’ll show that PARITY is not in
AC0, i.e., AC0 ⊊ NC1.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Further, L is in log-space uniform ACi if Cn is
implicitly log-space computable from 1n.

i ≥ 0

log-space uniform AC ⊆ P .

P-completeness

P-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = (uniform) NC? Is P = L?…use log-space
reduction!

 Definition. A language L ∈ P is P-complete if for every
L’ in P , L’ ≤l L.

P-complete problems

 Circuit value problem. Given a circuit and an input,
compute the output of the circuit. (The reduction in the

Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system
of linear inequality constraints over rationals.
(Assignment problem)

 CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

No log-space algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in L P = L.

 Proof. Easy.

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof. direction is straightforward.

 Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P ⊆ NC.

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof.() Let L’ ∈ P. As L is P-complete, L’ ≤l L.

…

NC ckt for
L ∩ {0,1}m

y ∈ {0,1}m

… …

Log-space
 algo

Log-space
 algo

x ∈ {0,1}n x ∈ {0,1}n

…

m = poly(n)

Is x ∈ L’ ?

Size = poly(n)
Depth = poly(log n)

No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Proof.() Let L’ ∈ P. As L is P-complete, L’ ≤l L.

…

NC ckt for
L ∩ {0,1}m

y ∈ {0,1}m

… …

Log-space
 algo

Log-space
 algo

x ∈ {0,1}n x ∈ {0,1}n

…

m = poly(n)

Is x ∈ L’ ?

Size = poly(n)
Depth = poly(log n)

Need to replace
this by a NC ckt.

Parallelization of Log-space

 Do problems in L have efficient parallel algorithms?
Yes!

 Theorem. NL ⊆ (uniform) NC. (Assignment problem)

Parallelization of Log-space

 Do problems in L have efficient parallel algorithms?
Yes!

 Theorem. NL ⊆ (uniform) NC. (Assignment problem)

 Proof sketch.

 1. Construct the adjacency matrix A of the
configuration graph.

 2. Use repeated squaring of A to find out if there’s a
path from start to accept configurations.

Complexity zoo

EXP

PSPACE

PH

L

NL

P

NP co-NP

NC

NEXP

(uniform) NC

