
Computational Complexity Theory 

 

  Lecture 16:  Class AC and NC; 

       P-completeness 

 

 
Department of Computer Science, 

Indian Institute of Science 



Recap: Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size of circuit is the no. of edges in it. Depth is the 
length of the longest path from an i/p to o/p node. 



Recap: Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size corresponds to “sequential time complexity”. 
Depth corresponds to “parallel time complexity”. 



Recap: Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 



Recap: Class P/poly 

 Observation:  P ⊆ P/poly . 

 Is P = P/poly? No! P/poly contains undecidable 
languages. 

 

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 

 Obs.  Any unary language is in P/poly.  

 Hence, P ⊊ P/poly . 

 

 



Recap: Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly? 



Recap: Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 

 If we can show NP ⊄ P/poly assuming P ≠ NP , then 

            NP ⊄ P/poly            P ≠ NP . 

 

 Karp-Lipton theorem shows NP ⊄ P/poly assuming 
the stronger statement PH ≠ ∑2 . 

 

 



Recap: Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 

 

 

 

 



Recap: Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 

 

 



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

                                          

Recap: Lower bound for Boolean formulas 



Recap: Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Khrapchenko 1971) Any formula 
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).  

                                            



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Andreev 1987, Hastad 1998) There’s a f 
that can be computed by a O(n)-size circuit such that 
any formula computing f has size 𝛀(n3-o(1)).  

                                            

Recap: Lower bound for Boolean formulas 



Recap: Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Conjecture. (Circuits more powerful than formulas) 
There’s a f that can be computed by a O(n)-size 
circuit such that any formula computing f has size 
nω(1) .                           



Recap: LB for constant depth circuits 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 We’ll discuss a lower bound for constant depth 
circuits in the next lecture. 

                                            



Recap: Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 



Class NCi and ACi 



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 
i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 Homework:  PARITY is in NC1. 

i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 NC1 = poly(n)-size Boolean formulas.   (Assignment) 

i∈  



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Further, L is in log-space uniform NCi if Cn is 
implicitly log-space computable from 1n.  

Note:  Sometimes NCi is defined as 
log-space uniform NCi . 



Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Further, L is in log-space uniform NCi if Cn is 
implicitly log-space computable from 1n.  

log-space uniform NC ⊆ P . 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 

 Model:  PRAM (has a central shared memory) 

A processor can “deliver” a message to any other 
processor in O(log n) time. 

A processor has O(log n) bits of memory and 
performs a poly-time computation at every step. 

 Processor computation steps are synchronized. 



NC ≡ Efficient parallel computation 

 Definition.  A language L can be decided efficiently in 
parallel if there’s a polynomial function q(.) and  
constants c & i s.t. L∩{0,1}n can be decided using q(n) 
many processors in c.(log n)i time. 

 

 Observation. A language L is in NC if and only if L 
can be decided efficiently in parallel. 

 Proof. Almost immediate from the assumptions on 
the parallel computation model. 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. (stands for Alternating Class) 
i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Observation.  ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0. 

i ≥ 0 

Replace an unbounded fan-in gate by a 
binary tree of bounded fan-in gates. 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Observation.  NC = AC. 

i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 In the next lecture, we’ll show that PARITY is not in 
AC0, i.e.,  AC0 ⊊ NC1. 

i ≥ 0 



Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 Further, L is in log-space uniform ACi if Cn is 
implicitly log-space computable from 1n.  

i ≥ 0 

log-space uniform AC ⊆ P . 



P-completeness 



P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = (uniform) NC? Is P = L?…use log-space 
reduction! 

 

 Definition.  A language L ∈ P is P-complete if for every 
L’ in P , L’ ≤l L. 



P-complete problems 

 Circuit value problem. Given a circuit and an input, 
compute the output of the circuit. (The reduction in the 

Cook-Levin theorem can be made a log-space reduction.) 

 

 Linear programming. Check the feasibility of a system 
of linear inequality constraints over rationals. 
(Assignment problem) 

  

 CFG membership. Given a context-free grammar and 
a string, decide if the string can be generated by the 
grammar. 



No log-space algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in L          P = L. 

 Proof.  Easy. 

 

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L. 

 

 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.      direction is straightforward.  

 

 Can’t hope to get an efficient parallel algorithm for a 
P-complete problem unless P ⊆ NC. 

 

 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.(    ) Let L’ ∈ P. As L is P-complete, L’ ≤l L. 

 

 

… 

NC ckt for 
L ∩ {0,1}m 

y ∈ {0,1}m 

… … 

Log-space 
   algo 

Log-space 
   algo 

x ∈ {0,1}n x ∈ {0,1}n 

… 

m = poly(n) 

Is x ∈ L’ ? 

Size = poly(n) 
Depth = poly(log n) 



No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 Proof.(    ) Let L’ ∈ P. As L is P-complete, L’ ≤l L. 

 

 

… 

NC ckt for 
L ∩ {0,1}m 

y ∈ {0,1}m 

… … 

Log-space 
   algo 

Log-space 
   algo 

x ∈ {0,1}n x ∈ {0,1}n 

… 

m = poly(n) 

Is x ∈ L’ ? 

Size = poly(n) 
Depth = poly(log n) 

Need to replace 
this by a NC ckt. 



Parallelization of Log-space 

 Do problems in L have efficient parallel algorithms? 
Yes!  

 

 Theorem.  NL ⊆ (uniform) NC.   (Assignment problem) 

 

 

 



Parallelization of Log-space 

 Do problems in L have efficient parallel algorithms? 
Yes!  

 

 Theorem.  NL ⊆ (uniform) NC.   (Assignment problem) 

 Proof sketch.  

 1. Construct the adjacency matrix A of the 
configuration graph. 

 2. Use repeated squaring of A to find out if there’s a 
path from start to accept configurations. 

 

 

 



Complexity zoo 

EXP 

PSPACE 

PH 

L 

NL 

P 

NP co-NP 

NC 

NEXP 

(uniform) NC 


