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Department of Computer Science,
Indian Institute of Science




Recap: Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

® NC = U NC'
iEN

e PARITY is in NC' = poly(n)-size Boolean formulas.



Recap: Class AC

° For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a g(n)-size unbounded fan-in circuit
family {C, } ., Where depth of C_is at most c.(log n)'
for every neN.

g AC =U 0AC‘. (stands for Alternating Class)
o AC' € NC*I c AC*! for all i = 0.

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.



Recap: Class AC

° For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_} cn» Where depth of C_ is at most c.(log n)’
for every neN.

o AC = U AC.

i=0

e In this lecture, we’'ll show that PARITY is not in ACC,
i.e., AC° < NC!,



Recap: P-completeness

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

els P = (uniform) NC? Is P = L?...use log-space
reduction!

° A language L € P is P-complete if for every
U'inP,L 5/ L



Recap: P-complete problems

e Circuit value problem. Given a circuit and an input,

compute the output of the circuit. (The reduction in the
Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system
of linear inequality constraints over rationals.

e CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.



Recap: No log-space or parallel
algorithms for PC problems

e [heorem. Let L be a P-complete language. Then,
LisinL & P=L

e [heorem. Let L be a P-complete language. Then,
Lisin NC e P C NC.

e Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

e Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P © NC.



Recap: Parallelization of Log-space

e Do problems in L have efficient parallel algorithms? Yes!

o Theorem. NL € (uniform) NC.
m

\

(uniform) NC < ‘a \




The Parity function



The Parity function

e PARITY (X}, X5, ..., X)) = X, D x, D ... D x,.

o Fact. PARITY(x,, x5, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

!
has depth O(log n) has depth O(log n)

o [heorem. (Khrapchenko 19/71) Any formula computing
PARITY (x|, X, ..., x_) has size (n?).



The Parity function

e PARITY (X}, X5, ..., X)) = X, D x, D ... D x,.

o Fact. PARITY(x,, x5, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

o [heorem. (Khrapchenko 19/71) Any formula computing
PARITY (x|, X, ..., x_) has size (n?).

e Can poly-size constant depth circuits compute
PARITY? No!




Depth 2 circuit for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

- d@b D A term

<

literals

* Any Boolean function can be computed by a DNF
(similarly, CNF) with 2" terms (respectively, clauses).

e Can we do better for depth 2 circuits computing
PARITY?



Depth 2 circuit for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

° Any DNF computing PARITY has = 2" terms.

* Proof. Let ¢ be a DNF computing PARITY. Then, every
term in ¢ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false).



Depth 2 circuit for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

° Any DNF computing PARITY has = 2" terms.

* Proof. Let ¢ be a DNF computing PARITY. Then, every
term in ¢ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false). Such a term corresponds to a unique
assignment that makes the term evaluate to |. Terms
corresponding to assignments that set odd number of
variables to | must be present in ¢.




Depth 3 circuit for Parity

o Obs.There’s a 2°0' size depth 3 circuit for PARITY.

* Proof. x®x®..®x,D.. 0 x,Dx,D..Dx

| / | /
|

1
PARITY = y, D Dy,

» Divide & conquer: Compute y. and —y. by 200 sjze
DNFs on the x literals. Compute y, &© ... & y,, by a
200 size CNF on the y literals. “Attach” the CNF

with the DNFs and “merge” the two middle layers of
V gates.




Depth 3 circuit for Parity

o Obs.There’s a 2°0' size depth 3 circuit for PARITY.

* Proof. x®x®..®x,D.. 0 x,Dx,D..Dx
\ ; \ ;

| 1
PARITY = y, D Dy,

» Divide & conquer: Compute y. and —y. by 200 sjze
DNFs on the x literals. Compute y, &© ... & y,, by a
200 size CNF on the y literals. “Attach” the CNF

with the DNFs and “merge” the two middle layers of

V gates.
Is the 2°0'" upper bound on the size of depth 3 circuits
computing PARITY tight? “Yes”



Depth d circuit for Parity

o Obs. There’s a exp(n'/¢!) size depth d circuit for
PARITY, where exp(x) = 2%,

e Proof sketch. “Divide & conquer” for d-l levels.
Alternate between CNFs and DNFs. “Attach” the

CNFs and the DNFs appropriately, and then “merge”
the intermediate layers to bring the depth down to d.

o Is the exp(n'/(4-1)) upper bound on the size of depth d
circuits computing PARITY tight! “Yes”



Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Furst, Saxe and Sipser showed a quasi-polynomial
lower bound.

e Ajtai showed an exponential lower bound, but the
bound wasn’t optimal.

 Finally, Hastad showed an optimal lower bound.



Lower bound for depth d circuits

e Theorem.
Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Gives a super-polynomial lower bound for depth d
circuits for d up to O(log n/log log n).

* A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!



Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).
On the other hand, we cannot make PARITY evaluate
to a constant by setting less than n variables.



Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

e We'll prove this fact using Hastad’s Switching
lemma. But first let us discuss some structural
simplifications of depth d circuits.




Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

e We'll prove this fact using Hastad’'s Switching
lemma. But first let us discuss some/ structural
simplifications of depth d circuits.

Will be proved in the
next lecture



Simplifying depth d circuits

C

If f(x,,..., x_) is computable by a circuit of depth
and size s, then f is also computable by a circuit C of
epth d and size O(s) such that C has no = gates and

he inputs to C are x|, ..., x, and =X, ..., 7X,.



Simplifying depth d circuits

o If f(x,,..., x_) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are x, ..., %, and =X, ..., 7X

° If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s).




Simplifying depth d circuits

o If f(x,,..., x_) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are x, ..., %, and =X, ..., 7X

° If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s).

° If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of V and A
gates with inputs feeding into only the bottom layer.




Simplifying depth d circuits

o If f(x,,..., x_) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are x, ..., %, and =X, ..., 7X

° If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s).

° If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of V and A
gates with inputs feeding into only the bottom layer.

Prove the above facts.



Random restrictions

* A restriction o is a partial assighment to a subset of the
n variables.

e A random restriction o that leaves m variables
alive/unset is obtained by picking a random subset S C
[n] of size n-m and setting every variable in S to 0/|
uniformly and independently.

e Let f, denote the function obtained by applying the
restriction o on f.



The Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f  can’t be represented as a k-DNF] < (I6pt)~.



The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f  can’t be represented as a k-DNF] < (I6pt)~.

* We can interchange “CNF”’ and “DNF” in the above
statement by applying the lemma on —f.



The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f  can’t be represented as a k-DNF] < (I6pt)~.

* We can interchange “CNF”’ and “DNF” in the above
statement by applying the lemma on —f.

* Before proving the lemma, let us see how it is used to
prove lower bound for depth d circuits.



Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. Bottom-up application of the switching lemma.



Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)".




Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)" So,

Pr[a fan-in > t last layer V gate survives] < s(3/4)".



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. '/,
and then set it to 0/| uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)" So,

Pr[a fan-in > t last layer V gate survives] <|s(3/4)".




Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.

* With probability = | - s(3/4)%, every A gate of the
second-last layer of C, computes a t-CNF.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.

* With probability = | - s(3/4)%, every A gate of the
second-last layer of C, computes a t-CNF.

* Let n, be the no. of unset variables after Step 0. By
Chernoff bound, n, = n/4 with probability | — 2-¢M),



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.

* With probability = | - s(3/4)%, every A gate of the
second-last layer of C, computes a t-CNF.

* Let n, be the no. of unset variables after Step 0. By
Chernoff bound|n, = n/4|with probability | - 2-¢")]




Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

e By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C, cannot
be expressed as a t-DNF is = s.(|6pt)-.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

e By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C, cannot
be expressed as a t-DNF is <|s.(|6pt)".




Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.
e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* Replace the t-CNFs by the corresponding t-DNFs.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.
e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* Replace the t-CNFs by the corresponding t-DNFs.

* Merge the Vv gates of the second-last layer with the Vv
gates of the layer above. C, be the resulting ckt.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

e The no. of V gates of the second-last layer of the
resulting circuit C, equals the no. of V gates of the
third-last layer of C,. So, this no.is < s.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

» Merging reduces the depth to d-|.

o All the gates of the second-last layer of C, compute t-
DNFs with probability = | - s.(16pt)-.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

e By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C, cannot
be expressed as a t-CNF is = s.(16pt)-.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

e By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C, cannot
be expressed as a t-CNF is = |s.( | 6pt)-.




Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.
e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

* Replace the t-DNFs by the corresponding t-CNFs.

* Merge the A gates of the second-last layer with the A
gates of the layer above. C, be the resulting ckt.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

e The no. of A gates of the second-last layer of the
resulting circuit C; equals the no. of A gates of the
third-last layer of C,. So, this no.is = s ( ).



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

» Merging reduces the depth to d-2.

* All the gates of the second-last layer of C; compute t-
CNFs with probability = | - s.(16pt)-.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C;) = s.

o Step 3: Apply a random restriction o; on the n;
variables that leaves n, = pn; variables alive, where p
is same as before. Continue as before..



Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - 5.(d-2)(16pt)t - 2-20) - 5(3/4)".

» The number of variables alive is p9-?n, = (p9-?n)/4.



Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - s.(d-2)(16pt)t - 24" - 5(3/4)",
» The number of variables alive is p9-?n, = (p9-?n)/4.

* Observe that by setting t more variables, we can now
fix the value of the circuit. But, recall that the value of
PARITY cannot be fixed by setting < n variables.



Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| -s.(d-2)(16pt)t - 2-%M - 5(3/4)t,
» The number of variables alive is p9-?n, = (p9-?n)/4.
* Hence,
either | - s.(d-2)(16pt)t - 2-4M -5(3/4)t < 0,

or p¥2n, < t.



Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =
| -s.(d-2)(16pt)t - 2-%M - 5(3/4)t,
» The number of variables alive is p9-?n, = (p9-?n)/4.
* By choosing t = O(n"¢-") and p = 1/(160 t), we can
make sure that \
pd2n, > t. <



Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - s.(d-2)(16pt)t - 2-4M - 5(3/4)t.
» The number of variables alive is p9?n, = (p9?n)/4.
» Therefore, for t = O(n'/(4-N)and p = 1/(160 t),
| - 5.(d-2)(16pt): - 2-20) - 5(3/4): < O,
- 5= exp(@(n'))




